RT Journal Article SR Electronic T1 A bispecific immunotweezer prevents soluble PrP oligomers and abolishes prion toxicity JF bioRxiv FD Cold Spring Harbor Laboratory SP 386763 DO 10.1101/386763 A1 Marco Bardelli A1 Karl Frontzek A1 Luca Simonelli A1 Simone Hornemann A1 Mattia Pedotti A1 Federica Mazzola A1 Manfredi Carta A1 Valeria Eckhardt A1 Rocco D’Antuono A1 Tommaso Virgilio A1 Santiago F. González A1 Adriano Aguzzi A1 Luca Varani YR 2018 UL http://biorxiv.org/content/early/2018/08/10/386763.abstract AB Antibodies to the prion protein, PrP, represent a promising therapeutic approach against prion diseases but the neurotoxicity of certain anti-PrP antibodies has caused concern. Here we describe scPOM-bi, a bispecific antibody designed to function as a molecular prion tweezer. scPOM-bi combines the complementarity-determining regions of the neurotoxic antibody POM1 and the neuroprotective POM2, which bind the globular domain (GD) and flexible tail (FT) respectively. We found that scPOM-bi confers protection to prion-infected organotypic cerebellar slices even when prion pathology is already conspicuous. Moreover, scPOM-bi prevents the formation of soluble oligomers that correlate with neurotoxic PrP species. Simultaneous targeting of both GD and FT was more effective than concomitant treatment with the individual molecules or targeting the tail alone, possibly by preventing the GD from entering a toxic-prone state. We conclude that simultaneous binding of the GD and flexible tail of PrP results in strong protection from prion neurotoxicity and may represent a promising strategy for anti-prion immunotherapy.Author summary Antibody immunotherapy is considered a viable strategy against prion disease. We previously showed that antibodies against the so-called globular domain of Prion Protein (PrP) can cause PrP dependent neurotoxicity; this does not happen for antibodies against the flexible tail of PrP, which therefore ought to be preferred for therapy.Here we show that simultaneous targeting of both globular domain and flexible tail by a bispecific, combination of a toxic and a non-toxic antibody, results in stronger protection against prion toxicity, even if the bispecific is administered when prion pathology is already conspicuous.We hypothesize that neurotoxicity arises from binding to specific “toxicity triggering sites” in the globular domain. We designed our bispecific with two aims: i) occupying one such site and preventing prion or other factors from docking to it and ii) binding to the flexible tail to engage the region of PrP necessary for neurotoxicity.We also show that neurotoxic antibodies cause the formation of soluble PrP oligomers that cause toxicity on PrP expressing cell lines; these are not formed in the presence of prion protective antibodies. We suggest that these soluble species might play a role in prion toxicity, similarly to what is generally agreed to happen in other neurodegenerative disorders.