RT Journal Article SR Electronic T1 An improved hgcAB primer set and direct high-throughput sequencing expand Hg-methylator diversity in nature JF bioRxiv FD Cold Spring Harbor Laboratory SP 2020.03.10.983866 DO 10.1101/2020.03.10.983866 A1 Caitlin M. Gionfriddo A1 Ann M. Wymore A1 Daniel S. Jones A1 Regina L. Wilpiszeski A1 Mackenzie M. Lynes A1 Geoff A. Christensen A1 Ally Soren A1 Cynthia C. Gilmour A1 Mircea Podar A1 Dwayne A. Elias YR 2020 UL http://biorxiv.org/content/early/2020/03/11/2020.03.10.983866.abstract AB The gene pair hgcAB is essential for microbial mercury methylation. Our understanding of its abundance and diversity in nature is rapidly evolving. In this study we developed a new broad-range primer set for hgcAB, plus an expanded hgcAB reference library, and used these to characterize Hg-methylating communities from diverse environments. We applied this new Hg-methylator database to assign taxonomy to hgcA sequences from clone, amplicon, and metagenomic datasets. We evaluated potential biases introduced in primer design, sequence length, and classification, and suggest best practices for studying Hg-methylator diversity. Our study confirms the emerging picture of an expanded diversity of HgcAB-encoding microbes in many types of ecosystems, with abundant putative mercury methylators Nitrospirae and Chloroflexi in several new environments including salt marsh and peat soils. Other common microbes encoding HgcAB included Phycisphaerae, Aminicenantes, Spirochaetes, and Elusimicrobia. Gene abundance data also corroborate the important role of two “classic” groups of methylators (Deltaproteobacteria and Methanomicrobia) in many environments, but generally show a scarcity of hgcAB+ Firmicutes. The new primer set was developed to specifically target hgcAB sequences found in nature, reducing degeneracy and providing increased sensitivity while maintaining broad diversity capture. We evaluated mock communities to confirm primer improvements, including culture spikes to environmental samples with variable DNA extraction and PCR amplification efficiencies. For select sites, this new workflow was combined with direct high-throughput hgcAB sequencing. The hgcAB diversity generated by direct amplicon sequencing confirmed the potential for novel Hg-methylators previously identified using metagenomic screens. A new phylogenetic analysis using sequences from freshwater, saline, and terrestrial environments showed Deltaproteobacteria HgcA sequences generally clustered among themselves, while metagenome-resolved HgcA sequences in other phyla tended to cluster by environment, suggesting horizontal gene transfer into many clades. HgcA from marine metagenomes often formed distinct subtrees from those sequenced from freshwater ecosystems. Overall the majority of HgcA sequences branch from a cluster of HgcAB fused proteins related to Thermococci, Atribacteria (candidate division OP9), Aminicenantes (OP8), and Chloroflexi. The improved primer set and library, combined with direct amplicon sequencing, provide a significantly improved assessment of the abundance and diversity of hgcAB+ microbes in nature.Contribution to the Field Statement The gene pair hgcAB is essential for microbial production of the neurotoxin methylmercury. In recent years these genes have been used as biomarkers to determine the potential of a microbiome to generate methylmercury via PCR amplification using degenerate primers from several research groups. However, improved techniques for capturing hgcAB diversity are necessary for identifying the major environmental producers of the neurotoxin as well as the expanding diversity of novel putative methylators, and the genes’ evolutionary history. The work described herein advances hgcAB detection in environmental samples through an updated primer set coupled with a direct high-throughput sequencing method that enables broader diversity capture. We provide an expanded hgcAB sequence reference library that allows for more sensitive and robust estimations of Hg-methylator diversity and potential for MeHg generation in the environment. The hgcAB diversity generated by high-throughput sequencing confirms the potential for novel Hg-methylators previously only identified using metagenomic screens. This study provides a significantly improved assessment of the abundance and diversity of hgcAB+ microbes in nature. By expanding our understanding of the microbial metabolic clades associated with mercury methylation, this work improves our ability to predict environmental conditions that drive production and accumulation of the neurotoxin in aquatic ecosystems.