RT Journal Article SR Electronic T1 Integrated Genomic Analysis of Hypoxia Genes across Cancer Types Identifies Significant Associations with Cancer Hallmarks JF bioRxiv FD Cold Spring Harbor Laboratory SP 403717 DO 10.1101/403717 A1 Lingjian Yang A1 Laura Forker A1 Christina S. Fjeldbo A1 Robert G. Bristow A1 Heidi Lyng A1 Catharine M. L. West YR 2018 UL http://biorxiv.org/content/early/2018/08/29/403717.abstract AB Hypoxia is a generic micro-environmental factor in most solid tumours. While most published literature focused on in vitro or single tumour type investigations, we carried out the first multi-omics pan cancer analysis of hypoxia with the aim of gaining a comprehensive understanding of its implication in tumour biology. A core set of 52 mRNAs were curated based on experimentally validated hypoxia gene sets from multiple cancer types. The 52 mRNAs collectively stratified high- and low-hypoxia tumours from The Cancer Genome Atlas (TCGA) database (9698 primary tumours) in each of the 32 cancer types available. High- hypoxia tumours had high expression of not only mRNA but also protein and microRNA markers of hypoxia. In a pan cancer transcriptomic analysis, ≥70% of the known cancer hallmark pathways were enriched in high-hypoxia tumours, most notably epithelial mesenchymal transition potential, proliferation (G2M checkpoint, E2F targets, MYC targets) and immunology response. In a multi-omics analysis, gene expression-determined high- hypoxia tumours had a higher non-silent mutation rate, DNA damage repair deficiency and leukocyte infiltration. The associations largely remained significant after correcting for confounding factors, showing a profound impact of hypoxia in tumour evolution across cancer types. High-hypoxia tumours determined using the core gene set had a poor prognosis in 16/32 cancer types, with statistical significances remaining in five after adjusting for tumour stage and omics biomarkers. In summary, this first comprehensive in vivo map of hypoxia in cancers highlights the importance of this micro-environmental factor in driving tumour progression.