RT Journal Article SR Electronic T1 Migration through a small pore disrupts inactive chromatin organization in neutrophil-like cells JF bioRxiv FD Cold Spring Harbor Laboratory SP 339085 DO 10.1101/339085 A1 Elsie C. Jacobson A1 Jo K. Perry A1 David S. Long A1 Ada L. Olins A1 Donald E. Olins A1 Bryon E. Wright A1 Mark H. Vickers A1 Justin M. O’Sullivan YR 2018 UL http://biorxiv.org/content/early/2018/09/03/339085.abstract AB Background Mammalian cells are flexible and can rapidly change shape when they contract, adhere, or migrate. Their nucleus must be stiff enough to withstand cytoskeletal forces, but flexible enough to remodel as the cell changes shape. This is particularly important for cells migrating through constricted space, where the nuclear shape must change in order to fit through the constriction. This occurs many times in the life cycle of a neutrophil, which must protect its chromatin from damage and disruption associated with migration.Results Total RNA-sequencing identified that neutrophil migration through 5 or 14μm pores was associated with changes in the transcript levels of inflammation and chemotaxis-related genes, when compared to unmigrated cells. Differentially expressed transcripts specific to migration with constriction were enriched for groups of genes associated with cytoskeletal remodeling.Hi-C was used to capture the genome organization in control and migrated cells. Minimal switching was observed between the active (A) and inactive (B) compartments after migration. However, global depletion of short range contacts was observed following migration with constriction compared to migration without constriction. Regions with disrupted contacts, TADs, and compartments were enriched for inactive chromatin.Conclusion Short range genome organization is preferentially altered in inactive chromatin, possibly protecting transcriptionally active contacts from the disruptive effects of migration with constriction. This is consistent with current hypotheses implicating heterochromatin as the mechanoresponsive form of chromatin. Further investigation concerning the contribution of heterochromatin to stiffness, flexibility, and protection of nuclear function will be important for understanding cell migration in human health and disease.