TY - JOUR T1 - Chemometric Approaches for Developing Infrared Nanosensors to Image Anthracyclines JF - bioRxiv DO - 10.1101/407650 SP - 407650 AU - Jackson Travis Del Bonis-O’Donnell AU - Rebecca Pinals AU - Sanghwa Jeong AU - Ami Thakrar AU - Russ Wolfinger AU - Markita Landry Y1 - 2018/01/01 UR - http://biorxiv.org/content/early/2018/09/04/407650.abstract N2 - Generation, identification, and validation of optical probes to image molecular targets in a biological milieu remains a challenge. Synthetic molecular recognition approaches leveraging the intrinsic near-infrared fluorescence of single-walled carbon nanotubes is a promising approach for chronic biochemical imaging in tissues. However, generation of nanosensors for selective imaging of molecular targets requires a heuristic approach. Here, we present a chemometric platform for rapidly screening libraries of candidate single-walled carbon nanotube nanosensors against biochemical analytes to quantify fluorescence response to small molecules including vitamins, neurotransmitters, and chemotherapeutics. We further show this approach can be leveraged to identify biochemical analytes that selectively modulate the intrinsic near-infrared fluorescence of candidate nanosensors. Chemometric analysis thus enables identification of nanosensor-analyte ‘hits’ and also nanosensor fluorescence signaling modalities such as wavelength-shifts that are optimal for translation to biological imaging. Through this approach, we identify and characterize a nanosensor for the chemotherapeutic anthracycline doxorubicin, which provides an up to 17 nm fluorescence red-shift and exhibits an 8 µM limit of detection, compatible with peak circulatory concentrations of doxorubicin common in therapeutic administration. We demonstrate selectivity of this nanosensor over dacarbazine, a chemotherapeutic commonly co-injected with DOX. Lastly, we demonstrate nanosensor tissue compatibility for imaging of doxorubicin in muscle tissue by incorporating nanosensors into the mouse hindlimb and measuring nanosensor response to exogenous DOX administration. Our results motivate chemometric approaches to nanosensor discovery for chronic imaging of drug partitioning into tissues and towards real-time monitoring of drug accumulation. ER -