PT - JOURNAL ARTICLE AU - Wei Wei AU - Gary Ruvkun TI - Lysosomal activity regulates <em>Caenorhabditis elegans</em> mitochondrial dynamics through vitamin B12 metabolism AID - 10.1101/2020.04.20.049502 DP - 2020 Jan 01 TA - bioRxiv PG - 2020.04.20.049502 4099 - http://biorxiv.org/content/early/2020/04/20/2020.04.20.049502.short 4100 - http://biorxiv.org/content/early/2020/04/20/2020.04.20.049502.full AB - Mitochondrial fission and fusion are highly regulated by energy demand and physiological conditions to control the production, activity, and movement of these organelles. Mitochondria are arrayed in a periodic pattern in Caenorhabditis elegans muscle, but this pattern is disrupted by mutations in the mitochondrial fission component dynamin. Here we show that the dramatically disorganized mitochondria caused by a mitochondrial fission-defective dynamin mutation is strongly suppressed to a more periodic pattern by a second mutation in lysosomal biogenesis or acidification. Vitamin B12 is normally imported from the bacterial diet via lysosomal degradation of B12-binding proteins and transport of vitamin B12 to the mitochondrion and cytoplasm. We show that the lysosomal dysfunction induced by gene inactivations of lysosomal biogenesis or acidification factors causes vitamin B12 deficiency. Growth of the C. elegans dynamin mutant on an E. coli strain with low vitamin B12 also strongly suppressed the mitochondrial fission defect. Of the two C. elegans enzymes that require B12, gene inactivation of methionine synthase suppressed the mitochondrial fission defect of a dynamin mutation. We show that lysosomal dysfunction induced mitochondrial biogenesis which is mediated by vitamin B12 deficiency and methionine restriction. S-adenosylmethionine, the methyl donor of many methylation reactions, including histones, is synthesized from methionine by S-adenosylmethionine synthase; inactivation of the sams-1 S-adenosylmethionine synthase also suppresses the drp-1 fission defect, suggesting that vitamin B12 regulates mitochondrial biogenesis and then affects mitochondrial fission via chromatin pathways.SIGNIFICANCE STATEMENT The balance of mitochondrial fission and fusion, two aspects of mitochondrial dynamics, is important for mitochondrial function. Here we show that Caenorhabditis elegans lysosomal activity regulates mitochondrial dynamics by affecting mitochondrial fission through interfering the metabolism of a micronutrient, vitamin B12. Vitamin B12 is exclusively obtained from diets in animals including C. elegans and humans, and its uptake is mediated by the lysosome. We show that lysosomal dysfunction causes vitamin B12 deficiency that leads to reduction of methionine and S-adenosylmethionine to in turn increase mitochondrial biogenesis and fission. Our study provides an insight on the interactions between mitochondrial function and micronutrient metabolism.Competing Interest StatementThe authors have declared no competing interest.