TY - JOUR T1 - The <em>C. elegans</em> SMOC-1 protein acts cell non-autonomously to promote bone morphogenetic protein signaling JF - bioRxiv DO - 10.1101/416669 SP - 416669 AU - Melisa S. DeGroot AU - Herong Shi AU - Alice Eastman AU - Alexandra N. McKillop AU - Jun Liu Y1 - 2018/01/01 UR - http://biorxiv.org/content/early/2018/09/13/416669.abstract N2 - Bone morphogenetic protein (BMP) signaling regulates many different developmental and homeostatic processes in metazoans. The BMP pathway is conserved in Caenorhabditis elegans, and is known to regulate body size and mesoderm development. We have identified the C. elegans smoc-1 (Secreted MOdular Calcium binding protein-1) gene as a new player in the BMP pathway. smoc-1(0) null mutants have a small body size, while overexpression of smoc-1 led to a long body size and increased expression of the RAD-SMAD BMP reporter, suggesting that SMOC-1 acts as a positive modulator of BMP signaling. Using double mutant analysis, we showed that SMOC-1 antagonizes the function of the glypican LON-2 and acts through the BMP ligand DBL-1 to regulate BMP signaling. Moreover, SMOC-1 appears to specifically regulate BMP signaling without significant involvement in a TGFβ-like pathway that regulates dauer development. We found that smoc-1 is expressed in multiple tissues, including cells of the pharynx, intestine, and posterior hypodermis, and that the expression of smoc-1 in the intestine is positively regulated by BMP signaling. We further established that SMOC-1 functions cell non-autonomously to regulate body size. Human SMOC1 and SMOC2 can each partially rescue the smoc-1(0) mutant phenotype, suggesting that SMOC-1’s function in modulating BMP signaling is evolutionarily conserved. Together, our findings highlight a conserved role of SMOC proteins in modulating BMP signaling in metazoans.ARTICLE SUMMARY BMP signaling is critical for development and homeostasis in metazoans, and is under tight regulation. We report the identification and characterization of a Secreted MOdular Calcium binding protein SMOC-1 as a positive modulator of BMP signaling in C. elegans. We established that SMOC-1 antagonizes the function of LON-2/glypican and acts through the DBL-1/BMP ligand to promote BMP signaling. We identified smoc-1-expressing cells, and demonstrated that SMOC-1 acts cell non-autonomously and in a positive feedback loop to regulate BMP signaling. We also provide evidence suggesting that the function of SMOC proteins in the BMP pathway is conserved from worms to humans. ER -