RT Journal Article SR Electronic T1 Foraging as an evidence accumulation process JF bioRxiv FD Cold Spring Harbor Laboratory SP 416602 DO 10.1101/416602 A1 Jacob D. Davidson A1 Ahmed El Hady YR 2018 UL http://biorxiv.org/content/early/2018/09/14/416602.abstract AB A canonical foraging task is the patch-leaving problem, in which a forager must decide to leave a current resource in search for another. Theoretical work has derived optimal strategies for when to leave a patch, and experiments have tested for conditions where animals do or do not follow an optimal strategy. Nevertheless, models of patch-leaving decisions do not consider the imperfect and noisy sampling process through which an animal gathers information, and how this process is constrained by neurobiological mechanisms. In this theoretical study, we formulate an evidence accumulation model of patch-leaving decisions where the animal averages over noisy measurements to estimate the state of the current patch and the overall environment. Evidence accumulation models belong to the class of drift diffusion processes and have been used to model decision making in different contexts especially in cognitive and systems neuroscience. We solve the model for conditions where foraging decisions are optimal and equivalent to the marginal value theorem, and perform simulations to analyze deviations from optimal when these conditions are not met. By adjusting the drift rate and decision threshold, the model can represent different “strategies”, for example an increment-decrement or counting strategy. These strategies yield identical decisions in the limiting case but differ in how patch residence times adapt when the foraging environment is uncertain. To account for sub-optimal decisions, we introduce an energy-dependent utility function that predicts longer than optimal patch residence times when food is plentiful. Our model provides a quantitative connection between ecological models of foraging behavior and evidence accumulation models of decision making. Moreover, it provides a theoretical framework for potential experiments which seek to identify neural circuits underlying patch leaving decisions.