TY - JOUR T1 - Critical role of type III interferon in controlling SARS-CoV-2 infection, replication and spread in primary human intestinal epithelial cells JF - bioRxiv DO - 10.1101/2020.04.24.059667 SP - 2020.04.24.059667 AU - Megan L. Stanifer AU - Carmon Kee AU - Mirko Cortese AU - Sergio Triana AU - Markus Mukenhirn AU - Hans-Georg Kraeusslich AU - Theodore Alexandrov AU - Ralf Bartenschlager AU - Steeve Boulant Y1 - 2020/01/01 UR - http://biorxiv.org/content/early/2020/04/24/2020.04.24.059667.abstract N2 - SARS-CoV-2 is an unprecedented worldwide health problem that requires concerted and global approaches to better understand the virus in order to develop novel therapeutic approaches to stop the COVID-19 pandemic and to better prepare against potential future emergence of novel pandemic viruses. Although SARS-CoV-2 primarily targets cells of the lung epithelium causing respiratory infection and pathologies, there is growing evidence that the intestinal epithelium is also infected. However, the importance of the enteric phase of SARS-CoV-2 for virus-induced pathologies, spreading and prognosis remains unknown. Here, using both colon-derived cell lines and primary non-transformed colon organoids, we engage in the first comprehensive analysis of SARS-CoV-2 lifecycle in human intestinal epithelial cells. Our results demonstrate that human intestinal epithelial cells fully support SARS-CoV-2 infection, replication and production of infectious de-novo virus particles. Importantly, we identified intestinal epithelial cells as the best culture model to propagate SARS-CoV-2. We found that viral infection elicited an extremely robust intrinsic immune response where, interestingly, type III interferon mediated response was significantly more efficient at controlling SARS-CoV-2 replication and spread compared to type I interferon. Taken together, our data demonstrate that human intestinal epithelial cells are a productive site of SARS-CoV-2 replication and suggest that the enteric phase of SARS-CoV-2 may participate in the pathologies observed in COVID-19 patients by contributing in increasing patient viremia and by fueling an exacerbated cytokine response.Competing Interest StatementThe authors have declared no competing interest. ER -