PT - JOURNAL ARTICLE AU - Shai Pilosof AU - Qixin He AU - Kathryn E. Tiedje AU - Shazia Ruybal-Pesántez AU - Karen P. Day AU - Mercedes Pascual TI - Competition for hosts modulates vast antigenic diversity to generate persistent strain structure in <em>Plasmodium falciparum</em> AID - 10.1101/406546 DP - 2018 Jan 01 TA - bioRxiv PG - 406546 4099 - http://biorxiv.org/content/early/2018/09/18/406546.short 4100 - http://biorxiv.org/content/early/2018/09/18/406546.full AB - In their competition for hosts, parasites with antigens that are novel to host immunity will be at a competitive advantage. The resulting frequency-dependent selection can structure parasite populations into strains of limited genetic overlap. For Plasmodium falciparum–the causative agent of malaria–in endemic regions, the high recombination rates and associated vast diversity of its highly antigenic and multicopy var genes preclude such clear clustering; this undermines the definition of strains as specific, temporally-persisting gene variant combinations. We use temporal multilayer networks to analyze the genetic similarity of parasites in both simulated data and in an extensively and longitudinally sampled population in Ghana. When viewed over time, populations are structured into modules (i.e., groups) of parasite genomes whose var gene combinations are more similar within, than between, the modules, and whose persistence is much longer than that of the individual genomes that compose them. Comparison to neutral models that retain parasite population dynamics but lack competition reveals that the selection imposed by host immunity promotes the persistence of these modules. The modular structure is in turn associated with a slower acquisition of immunity by individual hosts. Modules thus represent dynamically generated niches in host immune space, which can be interpreted as strains. Negative frequency-dependent selection therefore shapes the organization of the var diversity into parasite genomes, leaving a persistence signature over ecological time scales. Multilayer networks extend the scope of phylodynamics analyses by allowing quantification of temporal genetic structure in organisms that generate variation via recombination or other non-bifurcating processes. A strain structure similar to the one described here should apply to other pathogens with large antigenic spaces that evolve via recombination. For malaria, the temporal modular structure should enable the formulation of tractable epidemiological models that account for parasite antigenic diversity and its influence on intervention outcomes.Significance Many pathogens, including the causative agent of malaria Plasmodium falciparum, use antigenic variation, obtained via recombination, as a strategy to evade the human immune system. The vast diversity and multiplicity of genes encoding antigenic variation in high transmission regions challenge the notion of the existence of distinct strains: temporally-persistent and specific combinations of genes relevant to epidemiology. We examine the role of human immune selection in generating such genetic population structure in the major blood-stage antigen of Plasmodium falciparum. We show, using simulated and empirical data, that immune selection generates and maintains ‘modules’ of genomes with higher genetic similarity within, than between, these groups. Selection further promotes the persistence of these modules for much longer times than those of their constituent genomes. Simulations show that the temporal modular structure reduces the speed at which hosts acquire immunity to the parasite. We argue that in P. falciparum modules can be viewed as dynamic strains occupying different niches in human immune space; they are thus relevant to formulating transmission models that encompass the antigenic diversity of the parasite. Our analyses may prove useful to understand the interplay between temporal genetic structure and epidemiology in other pathogens of human and wildlife importance.