%0 Journal Article
%A Hicks, Damien G
%A Speed, Terence P
%A Yassin, Mohammed
%A Russell, Sarah M
%T Maps of variability in cell lineage trees
%D 2018
%R 10.1101/267450
%J bioRxiv
%P 267450
%X New approaches to lineage tracking allow the study of cell differentiation over many generations of cells during development in multicellular organisms. Understanding the variability observed in these lineage trees requires new statistical methods. Whereas invariant cell lineages, such as that for the nematode Caenorhabditis elegans, can be described using a lineage map, defined as the fixed pattern of phenotypes overlaid onto the binary tree structure, the variability of cell lineages from higher organisms makes it impossible to draw a single lineage map. Here, we introduce lineage variability maps which describe the pattern of second-order variation throughout the lineage tree. These maps can be undirected graphs of the partial correlations between every lineal position or directed graphs showing the dynamics of bifurcated patterns in each subtree. By using the symmetry invariance of a binary tree to develop a generalized spectral analysis for cell lineages, we show how to infer these graphical models for lineages of any depth from sample sizes of only a few pedigrees. When tested on pedigrees from C. elegans expressing a marker for pharyngeal differentiation potential, the maps recover essential features of the known lineage map. When applied to highly-variable pedigrees monitoring cell size in T lymphocytes, the maps show how most of the phenotype is set by the founder naive T cell. Lineage variability maps thus elevate the concept of the lineage map to the population level, addressing questions about the potency and dynamics of cell lineages and providing a way to quantify the progressive restriction of cell fate with increasing depth in the tree.
%U https://www.biorxiv.org/content/biorxiv/early/2018/09/18/267450.full.pdf