RT Journal Article SR Electronic T1 Consistency of SVDQuartets and Maximum Likelihood for Coalescent-based Species Tree Estimation JF bioRxiv FD Cold Spring Harbor Laboratory SP 523050 DO 10.1101/523050 A1 Matthew Wascher A1 Laura Kubatko YR 2020 UL http://biorxiv.org/content/early/2020/05/08/523050.abstract AB Numerous methods for inferring species-level phylogenies under the coalescent model have been proposed within the last 20 years, and debates continue about the relative strengths and weaknesses of these methods. One desirable property of a phylogenetic estimator is that of statistical consistency, which means intuitively that as more data are collected, the probability that the estimated tree has the same topology as the true tree goes to 1. To date, consistency results for species tree inference under the multispecies coalescent have been derived only for summary statistics methods, such as ASTRAL and MP-EST. These methods have been found to be consistent given true gene trees, but may be inconsistent when gene trees are estimated from data for loci of finite length (Roch et al., 2019). Here we consider the question of statistical consistency for four taxa for SVDQuartets for general data types, as well as for the maximum likelihood (ML) method in the case in which the data are a collection of sites generated under the multispecies coalescent model such that the sites are conditionally independent given the species tree (we call these data Coalescent Independent Sites (CIS) data). We show that SVDQuartets is statistically consistent for all data types (i.e., for both CIS data and for multilocus data), and we derive its rate of convergence. We additionally show that ML is consistent for CIS data under the JC69 model, and discuss why a proof for the more general multilocus case is difficult. Finally, we compare the performance of maximum likelihood and SDVQuartets using simulation for both data types.Competing Interest StatementThe authors have declared no competing interest.