RT Journal Article SR Electronic T1 Fine-scale recombination landscapes between a freshwater and marine population of threespine stickleback fish JF bioRxiv FD Cold Spring Harbor Laboratory SP 430249 DO 10.1101/430249 A1 Alice F. Shanfelter A1 Sophie L. Archambeault A1 Michael A. White YR 2018 UL http://biorxiv.org/content/early/2018/09/29/430249.abstract AB Meiotic recombination is a highly conserved process that has profound effects on genome evolution. Recombination rates can vary drastically at a fine-scale across genomes and often localize to small recombination “hotspots” with highly elevated rates surrounded by regions with little recombination. Hotspot targeting to specific genomic locations is variable across species. In some mammals, hotspots have divergent landscapes between closely related species which is directed by the binding of the rapidly evolving protein, PRDM9. In many species outside of mammals, hotspots are generally conserved and tend to localize to regions with open chromatin such as transcription start sites. It remains unclear if the location of recombination hotspots diverge in taxa outside of mammals. Threespine stickleback fish (Gasterosteus aculeatus) are an excellent model to examine the evolution of recombination over short evolutionary timescales. Using an LD-based approach, we found recombination rates varied at a fine-scale across the genome, with many regions organized into narrow hotspots. Hotspots had divergent landscapes between stickleback populations, where only ~15% were shared, though part of this divergence could be due to demographic history. Additionally, we did not detect a strong association of PRDM9 with recombination hotspots in threespine stickleback fish. Our results suggest fine-scale recombination rates may be diverging between closely related populations of threespine stickleback fish and argue for additional molecular characterization to verify the extent of the divergence.