TY - JOUR T1 - Visualization and regulation of translocons in <em>Yersinia</em> type III protein secretion machines during host cell infection JF - bioRxiv DO - 10.1101/431908 SP - 431908 AU - Theresa Nauth AU - Franziska Huschka AU - Michaela Schweizer AU - Jens B. Bosse AU - Andreas Diepold AU - Antonio V. Failla AU - Anika Steffen AU - Theresia Stradal AU - Manuel Wolters AU - Martin Aepfelbacher Y1 - 2018/01/01 UR - http://biorxiv.org/content/early/2018/10/03/431908.abstract N2 - Type III secretion systems (T3SSs) are essential virulence factors of numerous bacterial pathogens. Upon host cell contact the T3SS machinery - also named injectisome - assembles a pore complex/translocon within host cell membranes that serves as an entry gate for the bacterial effectors. Whether and how translocons are physically connected to injectisome needles, whether their phenotype is related to the level of effector translocation and which target cell factors trigger their assembly have remained unclear. We employed the superresolution fluorescence microscopy techniques Stimulated Emission Depletion (STED) and Structured Illumination Microscopy (SIM) as well as immunogold electron microscopy to visualize Y. enterocolitica translocons during infection of different target cell types. Thereby we were able to resolve translocon and needle complex proteins within the same injectisomes and demonstrate that these fully assembled injectisomes are generated in a prevacuole, a PI(4,5)P2 enriched host cell compartment inaccessible to large extracellular proteins like antibodies. Furthermore, the putatively operable translocons were produced by the yersiniae to a much larger degree in macrophages (up to 25% of bacteria) than in HeLa cells (2% of bacteria). However, when the Rho GTPase Rac1 was activated in the HeLa cells, uptake of the yersiniae into the prevacuole, translocon formation and effector translocation were strongly enhanced reaching the same levels as in macrophages. Our findings indicate that operable T3SS translocons can be visualized as part of fully assembled injectisomes with superresolution fluorescence microscopy techniques. By using this technology we provide novel information about the spatiotemporal organisation of T3SS translocons and their regulation by host cell factors.Author Summary Many human, animal and plant pathogenic bacteria employ a molecular machine termed injectisome to inject their toxins into host cells. Because injectisomes are crucial for these bacteria’s infectious potential they have been considered as targets for antiinfective drugs. Injectisomes are highly similar between the different bacterial pathogens and most of their overall structure is well established at the molecular level. However, only little information is available for a central part of the injectisome named the translocon. This pore-like assembly integrates into host cell membranes and thereby serves as an entry gate for the bacterial toxins. We used state of the art fluorescence microscopy to watch translocons of the diarrheagenic pathogen Yersinia enterocolitica during infection of human host cells. Thereby we could for the first time - with fluorescence microscopy - visualize translocons connected to other parts of the injectisome. Furthermore, because translocons mark functional injectisomes we could obtain evidence that injectisomes only become active when the bacteria are almost completely enclosed by host cells. These findings provide a novel view on the organisation and regulation of bacterial translocons and may thus open up new strategies to block the function of infectious bacteria. ER -