PT - JOURNAL ARTICLE AU - Vadim Shchepachev AU - Stefan Bresson AU - Christos Spanos AU - Elisabeth Petfalski AU - Lutz Fischer AU - Juri Rappsilber AU - David Tollervey TI - Defining the RNA Interactome by Total RNA-Associated Protein Purification AID - 10.1101/436253 DP - 2018 Jan 01 TA - bioRxiv PG - 436253 4099 - http://biorxiv.org/content/early/2018/10/05/436253.short 4100 - http://biorxiv.org/content/early/2018/10/05/436253.full AB - UV crosslinking can be used to identify precise RNA targets for individual proteins, transcriptome-wide. We sought to develop a technique to generate reciprocal data, identifying precise sites of RNA-binding proteome-wide. The resulting technique, total RNA-associated protein purification (TRAPP), was applied to yeast (S. cerevisiae) and bacteria (E. coli). In all analyses, SILAC labelling was used to quantify protein recovery in the presence and absence of irradiation. For S. cerevisiae, we also compared crosslinking using 254 nm (UVC) irradiation (TRAPP) with 4-thiouracil (4tU) labelling combined with ~350 nm (UVA) irradiation (PAR-TRAPP). Recovery of proteins not anticipated to show RNA-binding activity was substantially higher in TRAPP compared to PAR-TRAPP. As an example of preferential TRAPP-crosslinking, we tested enolase (Eno1) and demonstrated its binding to tRNA loops in vivo. We speculate that many protein-RNA interactions have biophysical effects on localization and/or accessibility, by opposing or promoting phase separation for highly abundant protein. Homologous metabolic enzymes showed RNA crosslinking in S. cerevisiae and E. coli, indicating conservation of this property. TRAPP allows alterations in RNA interactions to be followed and we initially analyzed the effects of weak acid stress. This revealed specific alterations in RNA-protein interactions; for example, during late 60S ribosome subunit maturation. Precise sites of crosslinking at the level of individual amino acids (iTRAPP) were identified in 395 peptides from 155 unique proteins, following phospho-peptide enrichment combined with a bioinformatics pipeline (Xi). TRAPP is quick, simple and scalable, allowing rapid characterization of the RNA-bound proteome in many systems.