RT Journal Article SR Electronic T1 Mitochondrial type II NADH dehydrogenase of Plasmodium falciparum is dispensable and not the functional target of putative NDH2 quinolone inhibitors JF bioRxiv FD Cold Spring Harbor Laboratory SP 436881 DO 10.1101/436881 A1 Hangjun Ke A1 Suresh M. Ganesan A1 Swati Dass A1 Joanne M. Morrisey A1 Sovitj Pou A1 Aaron Nilsen A1 Michael K. Riscoe A1 Michael W. Mather A1 Akhil B. Vaidya YR 2018 UL http://biorxiv.org/content/early/2018/10/05/436881.abstract AB The battle against malaria has been substantially impeded by the recurrence of drug resistance in Plasmodium falciparum, the deadliest human malaria parasite. To counter the problem, novel antimalarial drugs are urgently needed, especially those that target unique pathways of the parasite, since they are less likely to have side effects. The mitochondrial type II NADH dehydrogenase of P. falciparum, PfNDH2 (PF3D7_0915000), has been considered a good prospective antimalarial drug target for over a decade, since malaria parasites lack the conventional multi-subunit NADH dehydrogenase, or Complex I, present in the mammalian mitochondrial electron transport chain (mtETC). Instead, Plasmodium parasites contain a single subunit NDH2, which lacks proton pumping activity and is absent in humans. A significant amount of effort has been expended to develop PfNDH2 specific inhibitors, yet the essentiality of PfNDH2 has not been convincingly verified. Herein, we knocked out PfNDH2 in P. falciparum via a CRISPR/Cas9 mediated approach. Deletion of PfNDH2 does not alter the parasite’s susceptibility to multiple mtETC inhibitors, including atovaquone and ELQ-300. We also show that the antimalarial activity of the fungal NDH2 inhibitor HDQ and its new derivative CK-2-68 is due to inhibition of the parasite cytochrome bc1 complex rather than PfNDH2. These compounds directly inhibit the ubiquinol-cytochrome c reductase activity of the malarial bc1 complex. Our results call into question the validity of PfNDH2 as an antimalarial drug target.Importance For a long time, PfNDH2 has been considered an attractive antimalarial drug target. However, the conclusion that PfNDH2 is essential was based on preliminary and incomplete data. Here we generate a PfNDH2 KO (knockout) parasite in the blood stages of Plasmodium falciparum, showing that the gene is not essential. We also show that previously reported PfNDH2-specific inhibitors kill the parasites primarily via targeting the cytochrome bc1 complex, not PfNDH2. Overall, we provide genetic and biochemical data that help to resolve a long-debated issue in the field regarding the potential of PfNDH2 as an antimalarial drug target.