%0 Journal Article %A Ahmed S. Abdelfattah %A Takashi Kawashima %A Amrita Singh %A Ondrej Novak %A Hui Liu %A Yichun Shuai %A Yi-Chieh Huang %A Jonathan B. Grimm %A Ronak Patel %A Johannes Friedrich %A Brett D. Mensh %A Liam Paninski %A John J. Macklin %A Kaspar Podgorski %A Bei-Jung Lin %A Tsai-Wen Chen %A Glenn C. Turner %A Zhe Liu %A Minoru Koyama %A Karel Svoboda %A Misha B. Ahrens %A Luke D. Lavis %A Eric R. Schreiter %T Bright and photostable chemigenetic indicators for extended in vivo voltage imaging %D 2018 %R 10.1101/436840 %J bioRxiv %P 436840 %X Imaging changes in membrane potential using genetically encoded fluorescent voltage indicators (GEVIs) has great potential for monitoring neuronal activity with high spatial and temporal resolution. Brightness and photostability of fluorescent proteins and rhodopsins have limited the utility of existing GEVIs. We engineered a novel GEVI, ‘Voltron’, that utilizes bright and photostable synthetic dyes instead of protein-based fluorophores, extending the combined duration of imaging and number of neurons imaged simultaneously by more than tenfold relative to existing GEVIs. We used Voltron for in vivo voltage imaging in mice, zebrafish, and fruit flies. In mouse cortex, Voltron allowed single-trial recording of spikes and subthreshold voltage signals from dozens of neurons simultaneously, over 15 minutes of continuous imaging. In larval zebrafish, Voltron enabled the precise correlation of spike timing with behavior. %U https://www.biorxiv.org/content/biorxiv/early/2018/10/06/436840.full.pdf