RT Journal Article SR Electronic T1 Altered chromatin localization of hybrid lethality proteins in Drosophila JF bioRxiv FD Cold Spring Harbor Laboratory SP 438432 DO 10.1101/438432 A1 J.C. Cooper A1 A. Lukacs A1 S. Reich A1 T. Schauer A1 A. Imhof A1 N Phadnis YR 2018 UL http://biorxiv.org/content/early/2018/10/08/438432.1.abstract AB Understanding hybrid incompatibilities is fundamental pursuit in evolutionary genetics. In crosses between Drosophila melanogaster females and Drosophila simulans males, the interaction of at least three genes is necessary for hybrid male lethality: Hmr mel, Lhr sim, and gfzf sim. All three hybrid incompatibility genes are chromatin associated factors. While HMR and LHR physically bind each other and function together in a single complex, the connection between either of these proteins and gfzf remains mysterious. Here, we investigate the allele specific chromatin binding patterns of gfzf. First, our cytological analyses show that there is little difference in protein localization of GFZF between the two species except at telomeric sequences. In particular, GFZF binds the telomeric retrotransposon repeat arrays, and the differential binding of GFZF at telomeres reflects the rapid changes in sequence composition at telomeres between D. melanogaster and D. simulans. Second, we investigate the patterns of GFZF and HMR co-localization and find that the two proteins do not normally co-localize in D. melanogaster. However, in inter-species hybrids, HMR shows extensive mis-localization to GFZF sites, and this altered localization requires the presence of gfzf sim. Third, we find by ChIP-Seq that over-expression of HMR and LHR within species is sufficient to cause HMR to mis-localize to GFZF binding sites, indicating that HMR has a natural low affinity for GFZF sites. Together, these studies provide the first insights into the different properties of gfzf between D. melanogaster and D. simulans as well as a molecular interaction between gfzf and Hmr in the form of altered protein localization.