@article {Studentsova445155, author = {Valentina Studentsova and Emma Knapp and Alayna E. Loiselle}, title = {Insulin Receptor Deletion in S100a4-lineage cells accelerates age-related bone loss}, elocation-id = {445155}, year = {2018}, doi = {10.1101/445155}, publisher = {Cold Spring Harbor Laboratory}, abstract = {Type I and Type II Diabetes dramatically impair skeletal health. Altered Insulin Receptor (IR) signaling is a common feature of both diseases, and insulin has potent bone anabolic functions. Several previous studies have demonstrated that loss of IR in bone cells results in disrupted bone homeostasis during early post-natal growth. Here we have deleted IR in S100a4-lineage cells (IRcKOS100a4) and assessed the effects on bone homeostasis at both young (15 weeks) and older adult (48 weeks) mice. S100a4-cre has previously been shown to target the perichondrium during bone development, and here we show that S100a4 is expressed by adult trabecular and cortical bone cells, and that S100a4-Cre effectively targets adult bone, resulting in efficient deletion of IR. Deletion of IR in S100a4-lineage cells does effect initial bone acquisition or homeostasis with no changes in cortical, trabecular or mechanical properties at 15-weeks of age, relative to wild type (WT) littermates. However, by 48-weeks of age, IRcKOS100a4 mice display substantial declines in trabecular bone volume, bone volume fraction and torsional rigidity, relative to age-matched WT controls. This work establishes the utility of using S100a4-cre to target bone and demonstrates that IR in S100a4-lineage cells is required for maintenance of bone homeostasis in adult mice.Author Contributions:Study conception and design: AEL; Acquisition of data: VS, EK; Analysis and interpretation of data: VS, EK, AEL; Drafting of manuscript: AEL; Revision and approval of manuscript: VS, EK, AEL.}, URL = {https://www.biorxiv.org/content/early/2018/10/16/445155}, eprint = {https://www.biorxiv.org/content/early/2018/10/16/445155.full.pdf}, journal = {bioRxiv} }