RT Journal Article SR Electronic T1 Functional Interrogation of Lynch Syndrome Associated MSH2 Missense Variants Using CRISPR-Cas9 Gene Editing in Human Embryonic Stem Cells JF bioRxiv FD Cold Spring Harbor Laboratory SP 459586 DO 10.1101/459586 A1 Abhijit Rath A1 Akriti Mishra A1 Victoria Duque Ferreira A1 Chaoran Hu A1 James P. Grady A1 Christopher D. Heinen YR 2018 UL http://biorxiv.org/content/early/2018/11/01/459586.abstract AB Lynch syndrome (LS) is a hereditary cancer predisposition condition caused by inactivating germline mutations in one of the DNA mismatch repair (MMR) genes. Identifying a deleterious germline mutation by DNA sequencing is important for confirming an LS diagnosis. Frameshift and nonsense mutations significantly alter the protein product and likely impair MMR function. However, the implication of a missense mutation is often difficult to interpret. Referred to as variants of uncertain significance (VUS), their discovery hampers the definitive LS diagnosis. To determine the pathogenic significance of a VUS it is helpful to know its impact on protein function. Functional studies in the test tube and in cellular models have been performed for some VUS, however, these studies have been limited by the artificial nature of the assays. We report here an improved functional assay in which we engineered site-specific MSH2 VUS using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 gene editing in human embryonic stem cells. This approach introduces the variant into the endogenous MSH2 loci, while simultaneously eliminating the wild-type gene. We then characterized the impact of the variants on cellular MMR functions including DNA damage response signaling upon challenge with a DNA alkylating agent and the repair of DNA microsatellites. We classified the MMR functional capability of 8 of 10 VUS under study providing valuable information for determining their likelihood of being bona fide LS mutations. This improved human cell-based assay system for functionally testing MMR gene VUS will facilitate the identification of high risk LS patients.Significance Statement Understanding how cancer-associated missense variants in MMR genes affect function helps determine whether they truly contribute to disease. Laboratory assays previously utilized are limited by their artificial nature. To improve this, we introduced variants directly into the endogenous MMR loci in hESCs using CRISPR-Cas9 gene editing. This approach allows us to assess each variant while being expressed by its normal regulatory elements in a cellular environment. Our results will help guide the management of patients world-wide who carry these variants. At the same time, this study provides a technical road map for assessing the functional effects of all LS-associated variants, as well as variants linked to other genetic diseases where a cell-based functional assay is available.