PT - JOURNAL ARTICLE AU - Veronica Preite AU - Christian Sailer AU - Lara Syllwasschy AU - Sian Bray AU - Ute Krämer AU - Levi Yant TI - Convergent evolution in <em>Arabidopsis halleri</em> and <em>Arabidopsis arenosa</em> on calamine metalliferous soils AID - 10.1101/459362 DP - 2018 Jan 01 TA - bioRxiv PG - 459362 4099 - http://biorxiv.org/content/early/2018/11/03/459362.short 4100 - http://biorxiv.org/content/early/2018/11/03/459362.full AB - It is a plausible hypothesis that parallel adaptation events to the same environmental challenge should result in genetic changes of similar or identical effects, depending on the underlying fitness landscapes. However, systematic testing of this is scarce. Here we examine this hypothesis in two closely related plant species, Arabidopsis halleri and Arabidopsis arenosa, which co-occur at two calamine metalliferous sites harbouring toxic levels of the heavy metals zinc and cadmium. We conduct individual genome resequencing alongside soil elemental analysis for 64 plants from 8 populations on metalliferous and non-metalliferous soils, and identify genomic footprints of selection and local adaptation. Selective sweep and environmental association analyses indicate a modest degree of gene as well as functional network convergence, whereby the proximal molecular factors mediating this convergence mostly differ between site pairs and species. Notably, we observe repeated selection on identical SNPs in several A. halleri genes at two independently colonized metalliferous sites. Our data suggest that species-specific metal handling and other biological features could explain a low degree of convergence between species. The parallel establishment of plant populations on calamine metalliferous soils involves convergent evolution, which will likely be more pervasive across sites purposely chosen for maximal similarity in soil composition.