TY - JOUR T1 - Rethinking root-shoot growth dynamics JF - bioRxiv DO - 10.1101/2020.06.29.177824 SP - 2020.06.29.177824 AU - David Robinson Y1 - 2020/01/01 UR - http://biorxiv.org/content/early/2020/06/29/2020.06.29.177824.abstract N2 - Using a simple plant growth model based on the logistic equation I re-evaluate how biomass allocation between roots and shoots articulates dynamically with the rate of whole-plant biomass production. Defined by parameters reflecting lumped physiological properties, the model constrains roots and shoots to grow sigmoidally over time. From those temporal patterns detailed trajectories of allocation and growth rate are reconstructed. Sigmoid growth trajectories of roots and shoots are incompatible with the dominant ‘functional equilibrium’ model of adaptive allocation and growth often used to explain plants’ responses to nutrient shortage and defoliation. Anything that changes the differential rates of growth between roots and shoots will automatically change allocation and, unavoidably, change whole-plant growth rate. Biomass allocation and whole-plant growth rate are not independent traits. Allocation and growth rate have no unique relationship to one another but can vary across a wide spectrum of possible relationships. When root-shoot allocation seems to respond to the environment it is likely to be a secondary illusory consequence of other primary responses such as localised root proliferation in soil or leaf expansion within canopy gaps. Changes in root-shoot allocation cannot themselves compensate directly for an impairment of growth rate caused by an external factor such as nutrient shortage or defoliation; therefore, such changes cannot be ‘adaptive’.‘The reasons are so simple they often escape notice.’ (James 2012, p. 6).Competing Interest StatementThe authors have declared no competing interest. ER -