RT Journal Article SR Electronic T1 The structural basis for release factor activation during translation termination revealed by time-resolved cryogenic electron microscopy JF bioRxiv FD Cold Spring Harbor Laboratory SP 470047 DO 10.1101/470047 A1 Ziao Fu A1 Gabriele Indrisiunaite A1 Sandip Kaledhonkar A1 Binita Shah A1 Ming Sun A1 Bo Chen A1 Robert A. Grassucci A1 Måns Ehrenberg A1 Joachim Frank YR 2018 UL http://biorxiv.org/content/early/2018/11/14/470047.abstract AB When the mRNA translating ribosome encounters a stop codon in its aminoacyl site (A site), it recruits a class-1 release factor (RF) to induce hydrolysis of the ester bond between peptide chain and peptidyl-site (P-site) tRNA. This process, called termination of translation, is under strong selection pressure for high speed and accuracy. Class-1 RFs (RF1, RF2 in bacteria, eRF1 in eukarya and aRF1 in archaea), have structural motifs that recognize stop codons in the decoding center (DC) and a universal GGQ motif for induction of ester bond hydrolysis in the peptidyl transfer center (PTC) 70 Å away from the DC. The finding that free RF2 is compact with only 20 Å between its codon reading and GGQ motifs came therefore as a surprise1. Cryo-electron microscopy (cryo-EM) then showed that ribosome-bound RF1 and RF2 have extended structures2,3, suggesting that bacterial RFs are compact when entering the ribosome and switch to the extended form in a stop signal-dependent manner3. FRET4, cryo-EM5,6 and X-ray crystallography7, along with a rapid kinetics study suggesting a pre-termination conformational change on the millisecond time-scale of ribosome-bound RF1 and RF28, have lent indirect support to this proposal. However, direct experimental evidence for such a short-lived compact conformation on the native pathway to RF-dependent termination is missing due to its transient nature. Here we use time-resolved cryo-EM9,10,11,12,13 to visualize compact and extended forms of RF1 and RF2 at 3.5 and 4 Å resolution, respectively, in the codon-recognizing complex on the pathway to termination. About 25% of ribosomal complexes have RFs in the compact state at 24 ms reaction time after mixing RF and ribosomes, and within 60 ms virtually all ribosome-bound RFs are transformed to their extended forms.