RT Journal Article SR Electronic T1 Intrinsically disordered regions regulate both catalytic and non-catalytic activities of the MutLα mismatch repair complex JF bioRxiv FD Cold Spring Harbor Laboratory SP 475152 DO 10.1101/475152 A1 Yoori Kim A1 Christopher M. Furman A1 Carol M. Manhart A1 Eric Alani A1 Ilya J. Finkelstein YR 2018 UL http://biorxiv.org/content/early/2018/11/20/475152.abstract AB Intrinsically disordered regions (IDRs) are present in at least 30% of the eukaryotic proteome and are enriched in chromatin-associated proteins. Using a combination of genetics, biochemistry, and single-molecule biophysics, we characterize how IDRs regulate the functions of the yeast MutLα (Mlh1-Pms1) mismatch repair (MMR) complex. Shortening or scrambling the IDRs in both subunits ablates MMR in vivo. Mlh1-Pms1 complexes with shorter IDRs that disrupt MMR retain wild-type DNA binding affinity but are impaired for diffusion on both naked and nucleosome-coated DNA. Moreover, the IDRs also regulate the ATP hydrolysis and nuclease activities that are encoded in the structured N- and C-terminal domains of the complex. This combination of phenotypes underlies the catastrophic MMR defect seen with the mutant MutLα in vivo. More broadly, this work highlights an unanticipated multi-functional role for IDRs in regulating both facilitated diffusion on chromatin and nucleolytic processing of a DNA substrate.