PT - JOURNAL ARTICLE AU - Monzilur Rahman AU - Ben D. B. Willmore AU - Andrew J. King AU - Nicol S. Harper TI - A dynamic network model can explain temporal receptive fields in primary auditory cortex AID - 10.1101/465047 DP - 2018 Jan 01 TA - bioRxiv PG - 465047 4099 - http://biorxiv.org/content/early/2018/11/20/465047.short 4100 - http://biorxiv.org/content/early/2018/11/20/465047.full AB - Auditory neurons encode stimulus history, which is often modelled using a span of time-delays in a spectro-temporal receptive field (STRF). We propose an alternative model for the encoding of stimulus history, which we apply to extracellular recordings of neurons in the primary auditory cortex of anaesthetized ferrets. For a linear-non-linear STRF model (LN model) to achieve a high level of performance in predicting single unit neural responses to natural sounds in the primary auditory cortex, we found that it is necessary to include time delays going back at least 200 ms in the past. This is an unrealistic time span for biological delay lines. We therefore asked how much of this dependence on stimulus history can instead be explained by dynamical aspects of neurons. We constructed a neural-network model whose output is the weighted sum of units whose responses are determined by a dynamic firing-rate equation. The dynamic aspect performs low-pass filtering on each unit’s response, providing an exponentially decaying memory whose time constant is individual to each unit. We find that this dynamic network (DNet) model, when fitted to the neural data using STRFs of only 25 ms duration, can achieve prediction performance on a held-out dataset comparable to the best performing LN model with STRFs of 200 ms duration. These findings suggest that integration due to the membrane time constants or other exponentially-decaying memory processes may underlie linear temporal receptive fields of neurons beyond 25 ms.AUTHOR SUMMARY The responses of neurons in the primary auditory cortex depend on the recent history of sounds over seconds or less. Typically, this dependence on the past has been modelled by applying a wide span of time delays to the input, although this is likely to be biologically unrealistic. Real neurons integrate the history of their activity due to the dynamical properties of their cell membranes and other components. We show that a network with a realistically narrow span of delays and with units having dynamic characteristics like those found in neurons, succinctly models neural responses recorded from ferret primary auditory cortex. Because these integrative properties are widespread, our dynamic network provides a basis for modelling responses in other neural systems.