TY - JOUR T1 - Novel autoregulatory cases of alternative splicing coupled with nonsense-mediated mRNA decay JF - bioRxiv DO - 10.1101/464404 SP - 464404 AU - Dmitri Pervouchine AU - Yaroslav Popov AU - Andy Berry AU - Beatrice Borsari AU - Adam Frankish AU - Roderic Guigó Y1 - 2018/01/01 UR - http://biorxiv.org/content/early/2018/11/24/464404.abstract N2 - Nonsense-mediated decay (NMD) is a eukaryotic mRNA surveillance system that selectively degrades transcripts with premature termination codons (PTC). Many RNA-binding proteins (RBP) regulate their expression levels by a negative feedback loop, in which RBP binds its own pre-mRNA and causes alternative splicing to introduce a PTC. We present a bioinformatic framework to identify novel such autoregulatory feedback loops by combining eCLIP assays for a large panel of RBPs with the data on shRNA inactivation of NMD pathway, and shRNA-depletion of RBPs followed by RNA-seq. We show that RBPs frequently bind their own pre-mRNAs and respond prominently to NMD pathway disruption. Poison and essential exons, i.e., exons that trigger NMD when included in the mRNA or skipped, respectively, respond oppositely to the inactivation of NMD pathway and to the depletion of their host genes, which allows identification of novel autoregulatory mechanisms for a number of human RBPs. For example, SRSF7 binds its own pre-mRNA and facilitates the inclusion of two poison exons; SFPQ binding promotes switching to an alternative distal 3’-UTR that is targeted by NMD; RPS3 activates a poison 5’-splice site in its pre-mRNA that leads to a frame shift; U2AF1 binding activates one of its two mutually exclusive exons, leading to NMD; TBRG4 is regulated by cluster splicing of its two essential exons. Our results indicate that autoregulatory negative feedback loop of alternative splicing and NMD is a generic form of post-transcriptional control of gene expression. ER -