%0 Journal Article %A Pascal Püllmann %A Anja Knorrscheidt %A Judith Münch %A Paul R. Palme %A Wolfgang Hoehenwarter %A Sylvestre Marillonnet %A Miguel Alcalde %A Bernhard Westermann %A Martin J. Weissenborn %T A modular two yeast species secretion system for the production and preparative application of fungal peroxygenases %D 2020 %R 10.1101/2020.07.22.216432 %J bioRxiv %P 2020.07.22.216432 %X Fungal unspecific peroxygenases (UPOs) are biocatalysts of outstanding interest. Providing access to novel UPOs using a modular secretion system was the central goal of this work. UPOs represent an enzyme class, catalysing versatile oxyfunctionalisation reactions on a broad substrate scope. They are occurring as secreted, glycosylated proteins bearing a haem-thiolate active site and solely rely on hydrogen peroxide as the oxygen source. Fungal peroxygenases are widespread throughout the fungal kingdom and hence a huge variety of UPO gene sequences is available. However, the heterologous production of UPOs in a fast-growing organism suitable for high throughput screening has only succeeded once—enabled by an intensive directed evolution campaign. Here, we developed and applied a modular Golden Gate-based secretion system, allowing the first yeast production of four active UPOs, their one-step purification and application in an enantioselective conversion on a preparative scale. The Golden Gate setup was designed to be broadly applicable and consists of the three module types: i) a signal peptide panel guiding secretion, ii) UPO genes, and iii) protein tags for purification and split-GFP detection. We show that optimal signal peptides could be selected for successful UPO secretion by combinatorial testing of 17 signal peptides for each UPO gene. The modular episomal system is suitable for use in Saccharomyces cerevisiae and was transferred to episomal and chromosomally integrated expression cassettes in Pichia pastoris. Shake flask productions in Pichia pastoris yielded up to 24 mg/L secreted UPO enzyme, which was employed for the preparative scale conversion of a phenethylamine derivative reaching 98.6 % ee. Our results demonstrate a rapid workflow from putative UPO gene to preparative scale enantioselective biotransformations.Competing Interest StatementEvolved AaeUPO* used in the current study is protected by CSIC patent WO/2017/081355 (licensed in exclusivity to EvoEnzyme S.L). %U https://www.biorxiv.org/content/biorxiv/early/2020/07/22/2020.07.22.216432.full.pdf