RT Journal Article SR Electronic T1 Learning Divisive Normalization in Primary Visual Cortex JF bioRxiv FD Cold Spring Harbor Laboratory SP 767285 DO 10.1101/767285 A1 Max F. Burg A1 Santiago A. Cadena A1 George H. Denfield A1 Edgar Y. Walker A1 Andreas S. Tolias A1 Matthias Bethge A1 Alexander S. Ecker YR 2020 UL http://biorxiv.org/content/early/2020/07/24/767285.abstract AB Divisive normalization (DN) is a prominent computational building block in the brain that has been proposed as a canonical cortical operation. Numerous experimental studies have verified its importance for capturing nonlinear response properties to simple, artificial stimuli, and computational studies suggest that DN is also an important component for processing natural stimuli. However, we lack quantitative models of DN that are directly informed by empirical data and applicable to arbitrary stimuli. Here, we developed an image-computable DN model and tested its ability to predict spiking responses of a large number of neurons to natural images. In macaque primary visual cortex (V1), we found that our model outperformed linear-nonlinear and wavelet-based feature representations and performed on par with state-of-the-art convolutional neural network models. Our model learns the pool of normalizing neurons and the magnitude of their contribution end-to-end from the data, answering a long-standing question about the tuning properties of DN: within the classical receptive field, oriented features were normalized preferentially by features with similar orientations rather than non-specifically as currently assumed. Overall, our work refines our view on gain control within the classical receptive field, quantifies the relevance of DN under stimulation with natural images and provides a new, high-performing, and compactly understandable model of V1.Author summary Divisive normalization is a computational building block apparent throughout sensory processing in the brain. Numerous studies in the visual cortex have highlighted its importance by explaining nonlinear neural response properties to synthesized simple stimuli like overlapping gratings with varying contrasts. However, we do not know if and how this normalization mechanism plays a role when processing complex stimuli like natural images. Here, we applied modern machine learning methods to build a general divisive normalization model that is directly informed by data and quantifies the importance of divisive normalization. By learning the normalization mechanism from a data set of natural images and neural responses from macaque primary visual cortex, our model made predictions as accurately as current stat-of-the-art convolutional neural networks. Moreover, our model has fewer parameters and offers direct interpretations of them. Specifically, we found that neurons that respond strongly to a specific orientation are preferentially normalized by other neurons that are highly active for similar orientations. Overall, we propose a biologically motivated model of primary visual cortex that is compact, more interpretable, performs on par with standard convolutional neural networks and refines our view on how normalization operates in visual cortex when processing natural stimuli.Competing Interest StatementThe authors have declared no competing interest.