PT - JOURNAL ARTICLE AU - Weis, Caroline AU - Cuénod, Aline AU - Rieck, Bastian AU - Llinares-López, Felipe AU - Dubuis, Olivier AU - Graf, Susanne AU - Lang, Claudia AU - Oberle, Michael AU - Soegaard, Kirstine K. AU - Osthoff, Michael AU - Borgwardt, Karsten AU - Egli, Adrian TI - Direct Antimicrobial Resistance Prediction from MALDI-TOF mass spectra profile in clinical isolates through Machine Learning AID - 10.1101/2020.07.30.228411 DP - 2020 Jan 01 TA - bioRxiv PG - 2020.07.30.228411 4099 - http://biorxiv.org/content/early/2020/07/30/2020.07.30.228411.short 4100 - http://biorxiv.org/content/early/2020/07/30/2020.07.30.228411.full AB - Early administration of effective antimicrobial treatments improves the outcome of infections. Culture-based antimicrobial resistance testing allows for tailored treatments, but takes up to 96h. We present a revolutionary approach to predict resistance with unmatched speed within 24h, using calibrated logistic regression and LightGBM-classifiers trained on species-specific MALDI-TOF mass spectrometry measurements. For this analysis, we created an unprecedented large, publicly-available dataset combining mass spectra and resistance information. Our models provide highly valuable treatment guidance 12–72h earlier than classical approaches. Rejection of uncertain predictions enables quality control and clinically-applicable sensitivities and specificities for the priority pathogens Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae.Competing Interest StatementThe authors have declared no competing interest.