TY - JOUR T1 - Biomechanical Characterization of SARS-CoV-2 Spike RBD and Human ACE2 Protein-Protein Interaction JF - bioRxiv DO - 10.1101/2020.07.31.230730 SP - 2020.07.31.230730 AU - W. Cao AU - C. Dong AU - S. Kim AU - D. Hou AU - W. Tai AU - L. Du AU - W. Im AU - X.F. Zhang Y1 - 2020/01/01 UR - http://biorxiv.org/content/early/2020/07/31/2020.07.31.230730.abstract N2 - The current COVID-19 pandemic has led to a devastating impact across the world. SARS-CoV-2 (the virus causing COVID-19) is known to use receptor-binding domain (RBD) at viral surface spike (S) protein to interact with the angiotensin-converting enzyme 2 (ACE2) receptor expressed on many human cell types. The RBD–ACE2 interaction is a crucial step to mediate the host cell entry of SARS-CoV-2. Recent studies indicate that the ACE2 interaction with the SARS-CoV-2 S protein has higher affinity than its binding with the structurally identical S protein of SARS-CoV-1, the virus causing the 2002-2004 SARS outbreak. However, the biophysical mechanism behind such binding affinity difference is unclear. This study utilizes a combined single-molecule force spectroscopy and steered molecular dynamics (SMD) simulation approach to quantify the specific interactions between CoV-2 or CoV-1 RBD and ACE2. Depending on the loading rates, the unbinding forces between CoV-2 RBD and ACE2 range from 70 to 110 pN, and are 30-50% higher than those of CoV-1 RBD and ACE2 under similar loading rates. SMD results indicate that CoV-2 RBD interacts with the N-linked glycan on Asn90 of ACE2. This interaction is mostly absent in the CoV-1 RBD–ACE2 complex. During the SMD simulations, the extra RBD-N-glycan interaction contributes to a greater force and prolonged interaction lifetime. The observation is confirmed by our experimental force spectroscopy study. After the removal of N-linked glycans on ACE2, its mechanical binding strength with CoV-2 RBD decreases to a similar level of the CoV-1 RBD–ACE2 interaction. Together, the study uncovers the mechanism behind the difference in ACE2 binding between SARS-CoV-2 and SARS-CoV-1, and could aid in the development of new strategies to block SARS-CoV-2 entry.STATEMENT OF SIGNIFICANCE This study utilizes a combined single-molecule force spectroscopy and steered molecular dynamics simulation approach to quantify the specific interactions between SARS-CoV-2 or SARS-CoV-1 receptor-binding domain and human ACE2. The study reveals the mechanism behind the difference in ACE2 binding between SARS-CoV-2 and SARS-CoV-1, and could aid in the development of new strategies to block SARS-CoV-2 entry. ER -