RT Journal Article SR Electronic T1 Bacterial behavior in human blood reveals complement evaders with persister-like features JF bioRxiv FD Cold Spring Harbor Laboratory SP 2020.08.18.255448 DO 10.1101/2020.08.18.255448 A1 Stéphane Pont A1 Nathan Fraikin A1 Yvan Caspar A1 Laurence Van Melderen A1 Ina Attrée A1 François Cretin YR 2020 UL http://biorxiv.org/content/early/2020/08/18/2020.08.18.255448.abstract AB Bacterial bloodstream infections (BSI) are a major health concern and can cause up to 40% mortality. Pseudomonas aeruginosa BSI is often of nosocomial origin and is associated with a particularly poor prognosis. The mechanism of bacterial persistence in blood is still largely unknown. Here, we analyzed the behavior of a cohort of clinical and laboratory Pseudomonas aeruginosa strains in human blood. In this specific environment, complement was the main defensive mechanism, acting either by direct bacterial lysis or by opsonophagocytosis, which required recognition by immune cells. We found highly variable survival rates for different strains in blood, whatever their origin, serotype, or the nature of their secreted toxins and despite their detection by immune cells. We identified and characterized a complement-tolerant subpopulation of bacterial cells that we named “evaders”. Evaders represented 0.1-0.001% of the initial bacterial load and displayed transient tolerance. Although evaders shared some features with bacterial persisters, which tolerate antibiotic treatment, they appear to have evolved distinct strategies to escape complement. We detected the evaders for five other major human pathogens: Acinetobacter baumannii, Burkholderia multivorans, enteroaggregative Escherichia coli, Klebsiella pneumoniae, and Yersinia enterocolitica. Thus, the evaders could allow the pathogen to persist within the bloodstream, and may be the cause of fatal bacteremia or dissemination, notably in the absence of effective antibiotic treatments.Author summary for “Complement evaders”Blood infections by antibiotic resistant bacteria, notably Pseudomonas aeruginosa, are major concerns in hospital settings. The complex interplay between P. aeruginosa and the innate immune system in the context of human blood is still poorly understood. By studying the behavior of various P. aeruginosa strains in human whole blood and plasma, we showed that bacterial strains display different rate of tolerance to the complement system. Despite the complement microbicide activity, most bacteria withstand elimination through phenotypic heterogeneity creating a tiny (<0.1%) subpopulation of transiently tolerant evaders. While genetically identical to the rest of the complement-sensitive population, evaders allow the bacteria to persist in plasma. This phenotypic heterogeneity thus prevents total elimination of the pathogen from the circulation, and represent a new strategy to disseminate within the organism.