RT Journal Article SR Electronic T1 Physiological and head motion signatures in static and time-varying functional connectivity and their subject discriminability JF bioRxiv FD Cold Spring Harbor Laboratory SP 2020.02.04.934554 DO 10.1101/2020.02.04.934554 A1 Alba Xifra-Porxas A1 Michalis Kassinopoulos A1 Georgios D. Mitsis YR 2020 UL http://biorxiv.org/content/early/2020/08/21/2020.02.04.934554.abstract AB Human brain connectivity yields significant potential as a noninvasive biomarker. Several studies have used fMRI-based connectivity fingerprinting to characterize individual patterns of brain activity. However, it is not clear whether these patterns mainly reflect neural activity or the effect of physiological and motion processes. To answer this question, we capitalize on a large data sample from the Human Connectome Project and rigorously investigate the contribution of the aforementioned processes on functional connectivity (FC) and time-varying FC, as well as their contribution to subject identifiability. We find that head motion, as well as heart rate and breathing fluctuations, induce artifactual connectivity within distinct resting-state networks and that they correlate with recurrent patterns in time-varying FC. Even though the spatiotemporal signatures of these processes yield above-chance levels in subject identifiability, removing their effects at the preprocessing stage improves identifiability, suggesting a neural component underpinning the inter-individual differences in connectivity.Competing Interest StatementThe authors have declared no competing interest.