RT Journal Article SR Electronic T1 Deciphering copper coordination in the animal prion protein amyloidogenic domain JF bioRxiv FD Cold Spring Harbor Laboratory SP 507624 DO 10.1101/507624 A1 Giulia Salzano A1 Martha Brennich A1 Giordano Mancini A1 Thanh Hoa Tran A1 Giuseppe Legname A1 Paola D’ Angelo A1 Gabriele Giachin YR 2018 UL http://biorxiv.org/content/early/2018/12/28/507624.abstract AB Prions are pathological isoforms of the cellular prion protein (PrPC) responsible for transmissible spongiform encephalopathies (TSE). PrPC interacts with copper through unique octarepeat and non-octarepeat (non-OR) binding sites. Previous works on human PrPC suggest that copper binding to the non-OR region may have a role during prion conversion. The molecular details of copper coordination within the non-OR region are not well characterized. By means of small angle X-ray scattering (SAXS) and extended X-ray absorption fine structure (EXAFS) spectroscopy, we have investigated the Cu(II) structural effects on the protein folding and its coordination geometries when bound to the non-OR region of recombinant PrPC (recPrP) from animal species considered high or less resistant to TSE. As TSE-resistant model, we used ovine PrPC carrying the protective polymorphism at residues A136, R154 and R171 (OvPrP ARR); while as highly TSE-susceptible PrPC models we employed OvPrP with polymorphism V136, R154 and Q171 (OvPrP VRQ) and Bank vole recPrP (BvPrP). Our results reveal that Cu(II) affects the structural plasticity of the non-OR region leading to a more compacted conformation of recPrP. We also identified two Cu(II) coordinations in the non-OR region of these animal species. In type-1 coordination present in OvPrP ARR, Cu(II) is coordinated by four residues (S95, Q98, M109 and H111). Conversely, the type-2 coordination is present in OvPrP VRQ and BvPrP, where Cu(II) is coordinated by three residues (Q98, M109 and H111) and by one water molecule, making the non-OR region more flexible and open to the solvent. These changes in copper coordination in prion resistant and susceptible species provide new insights into the molecular mechanisms governing the resistance or susceptibility of certain species to TSE.