RT Journal Article SR Electronic T1 Heme oxygenase-1 affects cytochrome P450 function through the formation of heteromeric complexes: Interactions between CYP1A2 and heme oxygenase-1 JF bioRxiv FD Cold Spring Harbor Laboratory SP 2020.09.14.296467 DO 10.1101/2020.09.14.296467 A1 J. Patrick Connick A1 James R. Reed A1 George F. Cawley A1 Wayne L. Backes YR 2020 UL http://biorxiv.org/content/early/2020/09/14/2020.09.14.296467.abstract AB Heme oxygenase 1 (HO-1) and the cytochromes P450 (P450s) are endoplasmic reticulum-bound enzymes that rely on the same protein, NADPH-cytochrome P450 reductase (POR), to provide the electrons necessary for substrate metabolism. Although the HO-1 and P450 systems are interconnected due to their common electron donor, they generally have been studied separately. As the expression of both HO-1 and P450s are affected by xenobiotic exposure, changes in HO-1 expression can potentially affect P450 function, and conversely, changes in P450 expression can influence HO-1. The goal of this study was to examine interactions between the P450 and HO-1 systems. Using bioluminescence resonance energy transfer (BRET), HO-1 formed HO-1•P450 complexes with CYP1A2, CYP1A1, and CYP2D6, but not all P450s. Studies then focused on the HO-1/CYP1A2 interaction. CYP1A2 formed a physical complex with HO-1 that was stable in the presence of POR. As expected, both HO-1 and CYP1A2 formed BRET-detectable complexes with POR. Whereas the POR•CYP1A2 complex was readily disrupted by the addition of HO-1, the POR•HO-1 complex was not significantly affected by the addition of CYP1A2. Interestingly, enzyme activities did not follow this pattern. Whereas BRET data suggested substantial inhibition of CYP1A2-mediated 7-ethoxyresorufin deethylation in the presence of HO-1, its activity was actually stimulated at subsaturating POR. In contrast, HO-1-mediated heme metabolism was inhibited at subsaturating POR. These results indicate that HO-1 and CYP1A2 form a stable complex and have mutual effects on the catalytic behavior of both proteins that cannot be explained by simple competition for POR.