PT - JOURNAL ARTICLE AU - Eachan O. Johnson AU - Emily LaVerriere AU - Mary Stanley AU - Emma Office AU - Elisabeth Meyer AU - Tomohiko Kawate AU - James Gomez AU - Rebecca E. Audette AU - Nirmalya Bandyopadhyay AU - Natalia Betancourt AU - Kayla Delano AU - Israel Da Silva AU - Joshua Davis AU - Christina Gallo AU - Michelle Gardner AU - Aaron Golas AU - Kristine M. Guinn AU - Rebecca Korn AU - Jennifer A. McConnell AU - Caitlin E. Moss AU - Kenan C. Murphy AU - Ray Nietupski AU - Kadamba G. Papavinasasundaram AU - Jessica T. Pinkham AU - Paula A. Pino AU - Megan K. Proulx AU - Nadine Ruecker AU - Naomi Song AU - Matthew Thompson AU - Carolina Trujillo AU - Shoko Wakabayashi AU - Joshua B. Wallach AU - Christopher Watson AU - Thomas R. Ioerger AU - Eric S. Lander AU - Brian K. Hubbard AU - Michael H. Serrano-Wu AU - Sabine Ehrt AU - Michael Fitzgerald AU - Eric J. Rubin AU - Christopher M. Sassetti AU - Dirk Schnappinger AU - Deborah T. Hung TI - Large-scale chemical-genetics yields new <em>Mycobacterium tuberculosis</em> inhibitor classes AID - 10.1101/396440 DP - 2019 Jan 01 TA - bioRxiv PG - 396440 4099 - http://biorxiv.org/content/early/2019/01/16/396440.short 4100 - http://biorxiv.org/content/early/2019/01/16/396440.full AB - New antibiotics are needed to combat rising resistance, with new Mycobacterium tuberculosis (Mtb) drugs of highest priority. Conventional whole-cell and biochemical antibiotic screens have failed. We developed a novel strategy termed PROSPECT (PRimary screening Of Strains to Prioritize Expanded Chemistry and Targets) in which we screen compounds against pools of strains depleted for essential bacterial targets. We engineered strains targeting 474 Mtb essential genes and screened pools of 100-150 strains against activity-enriched and unbiased compounds libraries, measuring &gt; 8.5-million chemical-genetic interactions. Primary screens identified &gt;10-fold more hits than screening wild-type Mtb alone, with chemical-genetic interactions providing immediate, direct target insight. We identified &gt; 40 novel compounds targeting DNA gyrase, cell wall, tryptophan, folate biosynthesis, and RNA polymerase, as well as inhibitors of a novel target EfpA. Chemical optimization yielded EfpA inhibitors with potent wild-type activity, thus demonstrating PROSPECT’s ability to yield inhibitors against novel targets which would have eluded conventional drug discovery.