PT - JOURNAL ARTICLE AU - Adam C. Smith AU - Brandon P.M. Edwards TI - North American Breeding Bird Survey status and trend estimates to inform a wide-range of conservation needs, using a flexible Bayesian hierarchical generalized additive model AID - 10.1101/2020.03.26.010215 DP - 2020 Jan 01 TA - bioRxiv PG - 2020.03.26.010215 4099 - http://biorxiv.org/content/early/2020/10/07/2020.03.26.010215.short 4100 - http://biorxiv.org/content/early/2020/10/07/2020.03.26.010215.full AB - The status and trend estimates derived from the North American Breeding Bird Survey (BBS), are critical sources of information for bird conservation. However, the estimates are partly dependent on the statistical model used. Therefore, multiple models are useful because not all of the varied uses of these estimates (e.g. inferences about long-term change, annual fluctuations, population cycles, recovery of once declining populations) are supported equally well by a single statistical model. Here we describe Bayesian hierarchical generalized additive models (GAM) for the BBS, which share information on the pattern of population change across a species’ range. We demonstrate the models and their benefits using data a selection of species; and we run a full cross-validation of the GAMs against two other models to compare predictive fit. The GAMs have better predictive fit than the standard model for all species studied here, and comparable predictive fit to an alternative first difference model. In addition, one version of the GAM described here (GAMYE) estimates a population trajectory that can be decomposed into a smooth component and the annual fluctuations around that smooth. This decomposition allows trend estimates based only on the smooth component, which are more stable between years and are therefore particularly useful for trend-based status assessments, such as those by the IUCN. It also allows for the easy customization of the model to incorporate covariates that influence the smooth component separately from those that influence annual fluctuations (e.g., climate cycles vs annual precipitation). For these reasons and more, this GAMYE model is a particularly useful model for the BBS-based status and trend estimates.LAY SUMMARYThe status and trend estimates derived from the North American Breeding Bird Survey are critical sources of information for bird conservation, but they are partly dependent on the statistical model used.We describe a model to estimate population status and trends from the North American Breeding Bird Survey data, using a Bayesian hierarchical generalized additive mixed-model that allows for flexible population trajectories and shares information on population change across a species’ range.The model generates estimates that are broadly useful for a wide range of common conservation applications, such as IUCN status assessments based on trends or changes in the rates of decline for species of concern; and the estimates have better or similar predictive accuracy to other models., andCompeting Interest StatementThe authors have declared no competing interest.