TY - JOUR T1 - Gene flow in phylogenomics: Sequence capture resolves species limits and biogeography of Afromontane forest endemic frogs from the Cameroon Highlands JF - bioRxiv DO - 10.1101/2020.10.09.332767 SP - 2020.10.09.332767 AU - Matej Dolinay AU - Tadeáš Nečas AU - Breda M. Zimkus AU - Andreas Schmitz AU - Eric B. Fokam AU - Emily Moriarty Lemmon AU - Alan R. Lemmon AU - Václav Gvoždík Y1 - 2020/01/01 UR - http://biorxiv.org/content/early/2020/10/10/2020.10.09.332767.abstract N2 - Puddle frogs of the Phrynobatrachus steindachneri species complex are a useful group for investigating speciation and phylogeography in Afromontane forests of the Cameroon Highlands (Cameroon Volcanic Line) in western Central Africa. The species complex is represented by six morphologically relatively cryptic mitochondrial DNA lineages, with only two of them distinguished at the species level – southern P. jimzimkusi and Lake Oku endemic P. njiomock, leaving the remaining four lineages with a pooled identification as ‘P. steindachneri’. In this study, the six mtDNA lineages are subjected to genomic sequence capture analyses to delimit species (together with morphology) and to study biogeography. Nuclear DNA data (387 loci; 571,936 aligned base pairs) distinguished all six mtDNA lineages, but the splitting pattern and depths of divergences supported only four main clades—besides P. jimzimkusi and P. njiomock, only two from the four ‘P. steindachneri’ mtDNA lineages. One is here described as a new species, P. sp. nov. Reticulate evolution (hybridization) was detected within the species complex with morphologically intermediate hybrid individuals placed between the parental species in phylogenomic analyses, forming a phylogenetic artefact – a ladder-like tree pattern. The presence of hybrids is undesirable in standard phylogenetic analyses, but is essential and beneficial in the network multispecies coalescent. This latter approach allowed us an insight into the reticulate evolutionary history of these endemic frogs. Introgressions likely occurred during the Middle and Late Pleistocene climatic oscillations, due to the cyclic connections (likely dominating during cold glacials) and separations (warm interglacials) of montane forests. The genomic phylogeographic pattern supports the earliest division between southern (Mt. Manengouba to Mt. Oku) and northern mountains at the onset of the Pleistocene. Further subdivisions occurred in the Early Pleistocene separating populations from the northernmost (Tchabal Mbabo, Gotel Mts.) and middle mountains (Mt. Mbam, Mt. Oku, Mambilla Plateau), as well as the microendemic lineage restricted to Lake Oku (Mt. Oku). Mount Oku harboring three species is of particular conservation importance. This unique model system is highly threatened as all the species within the complex have exhibited severe population declines in the past decade, placing them on the brink of extinction. We therefore urge for conservation actions in the Cameroon Highlands to preserve their diversity before it is too late.Competing Interest StatementThe authors have declared no competing interest. ER -