RT Journal Article SR Electronic T1 Serotonin neurons modulate learning rate through uncertainty JF bioRxiv FD Cold Spring Harbor Laboratory SP 2020.10.24.353508 DO 10.1101/2020.10.24.353508 A1 Cooper D. Grossman A1 Bilal A. Bari A1 Jeremiah Y. Cohen YR 2020 UL http://biorxiv.org/content/early/2020/10/24/2020.10.24.353508.abstract AB Regulating how fast to learn is critical for flexible behavior. Learning about the consequences of actions should be slow in stable environments, but accelerate when that environment changes. Recognizing stability and detecting change is difficult in environments with noisy relationships between actions and outcomes. Under these conditions, theories propose that uncertainty can be used to modulate learning rates (“meta-learning”). We show that mice behaving in a dynamic foraging task exhibit choice behavior that varied as a function of two forms of uncertainty estimated from a meta-learning model. The activity of dorsal raphe serotonin neurons tracked both types of uncertainty in the foraging task, as well as in a dynamic Pavlovian task. Reversible inhibition of serotonin neurons in the foraging task reproduced changes in learning predicted by a simulated lesion of meta-learning in the model. We thus provide a quantitative link between serotonin neuron activity, learning, and decision making.Competing Interest StatementThe authors have declared no competing interest.