PT - JOURNAL ARTICLE AU - Aidana Massalimova AU - Ruiqing Ni AU - Roger M. Nitsch AU - Marco Reisert AU - Dominik von Elverfeldt AU - Jan Klohs TI - DTI reveals whole-brain microstructural changes in the P301L mouse model of tauopathy AID - 10.1101/2020.10.28.358465 DP - 2020 Jan 01 TA - bioRxiv PG - 2020.10.28.358465 4099 - http://biorxiv.org/content/early/2020/10/28/2020.10.28.358465.short 4100 - http://biorxiv.org/content/early/2020/10/28/2020.10.28.358465.full AB - Introduction Increased expression of hyperphosphorylated tau and the formation of neurofibrillary tangles are associated with neuronal loss and white matter damage. Using high resolution ex vivo diffusion tensor imaging (DTI), we investigated microstructural changes in the white and grey matter in the P301L mouse model of human tauopathy at 8.5 months-of-age. For unbiased computational analysis, we implemented a pipeline for voxel-based analysis (VBA) and atlas-based analysis (ABA) of DTI mouse brain data.Methods Hemizygous and homozygous transgenic P301L mice and non-transgenic littermates were used. DTI data were acquired for generation of fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD) maps. VBA on the entire brain were performed using SPM8 and SPM Mouse toolbox. Initially, all DTI maps were co-registered with Allen mouse brain atlas to bring them to one common coordinate space. In VBA, co-registered DTI maps were normalized and smoothed in order to perform two-sample t-tests to compare hemizygotes with non-transgenic littermates, homozygotes with non-transgenic littermates, hemizygotes with homozygotes on each DTI parameter map. In ABA, the average values for selected regions-of-interests were computed with co-registered DTI maps and labels in Allen mouse brain atlas. After, the same two-sample t-tests were executed on the estimated average values.Results We made reconstructed DTI data and VBA and ABA pipeline publicly available. With VBA, we found microstructural changes in the white matter in hemizygous P301L mice compared to non-transgenic littermates. In contrast, more pronounced and brain-wide spread changes were observed in VBA when comparing homozygous P301L mice with non-transgenic littermates. Statistical comparison of DTI metrics in selected brain regions by ABA corroborated findings from VBA. FA was found to be decreased in most brain regions, while MD, RD and AD were increased compared to hemizygotes and non-transgenic littermates.Discussion/Conclusion High resolution ex vivo DTI demonstrated brain-wide microstructural changes in the P301L mouse model of human tauopathy. The comparison between hemizygous and homozygous P301L mice revealed a gene-dose dependent effect on DTI metrics. The publicly available computational data analysis pipeline can provide a platform for future mechanistic and longitudinal studies.Competing Interest StatementThe authors have declared no competing interest.