PT - JOURNAL ARTICLE AU - Laura M Carroll AU - Ahmed Gaballa AU - Claudia Guldimann AU - Genevieve Sullivan AU - Lory O Henderson AU - Martin Wiedmann TI - Identification of novel mobilized colistin resistance gene <em>mcr</em>-9 in a multidrug-resistant, colistin-susceptible <em>Salmonella enterica</em> serotype Typhimurium isolate using a combination of high-throughput, <em>in silico</em> screening and functional analysis AID - 10.1101/539361 DP - 2019 Jan 01 TA - bioRxiv PG - 539361 4099 - http://biorxiv.org/content/early/2019/02/03/539361.short 4100 - http://biorxiv.org/content/early/2019/02/03/539361.full AB - Mobilized colistin resistance (mcr) genes are plasmid-borne genes that confer resistance to colistin, an antibiotic used to treat severe bacterial infections. To date, eight known mcr homologues have been described (mcr-1 to -8). Here, we describe mcr-9, a novel mcr homologue, detected in a Salmonella enterica serotype Typhimurium (S. Typhimurium) genome using an in silico approach, followed by experimental functional analysis. The amino acid sequence of mcr-9, detected in a multidrug resistant (MDR) S. Typhimurium strain isolated from a human patient in Washington State in 2010, most closely resembled mcr-3, aligning with 64.5% amino acid identity and 99.5% coverage using translated nucleotide blast. The S. Typhimurium strain was tested for phenotypic resistance to colistin and was found to be sensitive at the 2 mg/L European Committee on Antimicrobial Susceptibility Testing breakpoint under the tested conditions. To determine whether it was capable of conferring resistance to colistin when expressed in a heterologous host, mcr-9 was cloned in colistin-susceptible Escherichia coli NEB5α under an IPTG-induced promoter. Expression of mcr-9 conferred resistance to colistin in E. coli NEB5α at 1, 2, and 2.5 mg/L colistin, albeit at a lower level when compared to mcr-3. Pairwise comparisons of the predicted protein structures associated with all nine mcr homologues (Mcr-1 to -9) revealed that Mcr-9, Mcr-3, and Mcr-7 share a high degree of similarity at the structural level. The results of our approach indicate that mcr-9 is capable of conferring phenotypic resistance to colistin in Enterobacteriaceae and should be immediately considered when monitoring plasmid-mediated colistin resistance. Importance: Colistin is a last-resort antibiotic that is used to treat severe infections caused by MDR and extensively drug resistant (XDR) bacteria. The World Health Organization (WHO) has designated colistin as a Highest Priority Critically Important Antimicrobial for human medicine (WHO, Critically Important Antimicrobials for Human Medicine, 5th Revision, 2017), as it is often one of the only therapies available for treating serious bacterial infections in critically ill patients. Plasmid-borne mcr genes that confer resistance to colistin pose a threat to public health at an international scale, as they can be transmitted via horizontal gene transfer and have the potential to spread globally. Therefore, the establishment of a complete reference of mcr genes that can be used to screen for plasmid-mediated colistin resistance is essential for developing effective control strategies.