TY - JOUR T1 - Endothelial exosome plays functional role during rickettsial infection JF - bioRxiv DO - 10.1101/2020.11.16.385740 SP - 2020.11.16.385740 AU - Yakun Liu AU - Changcheng Zhou AU - Zhengchen Su AU - Qing Chang AU - Yuan Qiu AU - Jiani Bei AU - Angelo Gaitas AU - Jie Xiao AU - Alexandra Drelich AU - Kamil Khanipov AU - Yang Jin AU - Georgiy Golovko AU - Tais B. Saito AU - Bin Gong Y1 - 2020/01/01 UR - http://biorxiv.org/content/early/2020/11/17/2020.11.16.385740.abstract N2 - Spotted fever group rickettsioses (SFRs) are devastating human infections. Vascular endothelial cells (ECs) are the primary targets of infection. Edema resulting from EC barrier dysfunction occurs in the brain and lungs in most cases of lethal SFR, but the underlying mechanisms remain unclear. The aim of the study is to explore the potential role of Rickettsia (R)-infected, EC-derived exosomes (Exos) during infection. Using size-exclusion chromatography (SEC), we purified Exos from conditioned, filtered, bacteria-free media collected from R-infected human umbilical vein ECs (HUVECs) (R-ECExos) and plasma of R-infected mice (R-plsExos). We observed that rickettsial infection increases the release of heterogeneous plsExos, but endothelial exosomal size, morphology, and production were not significantly altered following infection. Compared to normal plsExos and ECExos, both R-plsExos and R-ECExos induced dysfunction of recipient normal brain microvascular Ecs (BMECs). The effect of R-plsExos on mouse recipient BMEC barrier function is dose-dependent. The effect of R-ECExos on human recipient BMEC barrier function is dependent on exosomal RNA cargo. Next-generation sequencing analysis and stem-loop quantitative reverse transcription PCR (RT-qPCR) validation revealed that R infection triggered the selective enrichment of endothelial exosomal mir-23a and mir-30b, which target the endothelial barrier. To our knowledge, this is the first report on the functional role of extracellular vesicles following infection by obligately intracellular bacteria.Importance Spotted fever group rickettsioses are devastating human infections. Vascular endothelial cells are the primary targets of infection. Edema resulting from endothelial barrier dysfunction occurs in the brain and lungs in most cases of lethal rickettsioses, but the underlying mechanisms remain unclear. The aim of the study is to explore the potential role of Rickettsia-infected, endothelial cell-derived exosomes during infection. We observed that rickettsial infection increases the release of heterogeneous plasma Exos, but endothelial exosomal size, morphology, and production were not significantly altered following infection. Rickettsia-infected, endothelial cell-derived exosomes induced dysfunction of recipient normal brain microvascular endothelial cells. The effect is dependent on exosomal RNA cargo. Next-generation sequencing analysis revealed that rickettsial infection triggered the selective enrichment of endothelial exosomal mir-23a and mir-30b, which target the endothelial barrier. To our knowledge, this is the first report on the functional role of extracellular vesicles following infection by obligately intracellular bacteria.Competing Interest StatementThe authors have declared no competing interest. ER -