%0 Journal Article %A Devanshi R. Patel %A Cassandra J. Field %A Kayla M. Septer %A Derek G. Sim %A Matthew J. Jones %A Talia A. Heinly %A Elizabeth A. McGraw %A Troy C Sutton %T Transmission and protection against re-infection in the ferret model with the SARS-CoV-2 USA-WA1/2020 reference isolate %D 2020 %R 10.1101/2020.11.20.392381 %J bioRxiv %P 2020.11.20.392381 %X SARS-CoV-2 has initiated a global pandemic and vaccines are being rapidly developed. Using the reference strain SARS-CoV-2 USA-WA1/2020, we evaluated modes of transmission and the ability of prior infection or vaccine-induced immunity to protect against infection in ferrets. Ferrets were semi-permissive to infection with the USA-WA1/2020 isolate. When transmission was assessed via the detection of vRNA at multiple timepoints, direct contact transmission was efficient to 3/3 and 3/4 contact animals in two respective studies, while respiratory transmission was poor to only 1/4 contact animals. To assess the durability of immunity, ferrets were re-challenged 28 or 56 days post-primary infection. Following viral challenge, no infectious virus was recovered in nasal wash samples. In addition, levels of vRNA in the nasal wash were several orders of magnitude lower than during primary infection, and vRNA was rapidly cleared. To determine if intramuscular vaccination protected ferrets against infection, ferrets were vaccinated using a prime-boost strategy with the S-protein receptor-binding domain formulated with an oil-in-water adjuvant. Upon viral challenge, none of the mock or vaccinated animals were protected against infection, and there were no significant differences in vRNA or infectious virus titers in the nasal wash. Combined these studies demonstrate that in ferrets direct contact is the predominant mode of transmission of the SARS-CoV-2 USA-WA1/2020 isolate and immunity to SARS-CoV-2 is maintained for at least 56 days. Our studies also indicate protection of the upper respiratory tract against SARS-CoV-2 will require vaccine strategies that mimic natural infection or induce site-specific immunity.Importance The SARS-CoV-2 USA-WA1/2020 strain is a CDC reference strain used by multiple research laboratories. Here, we show the predominant mode of transmission of this isolate in ferrets is by direct contact. We further demonstrate ferrets are protected against re-infection for at least 56 days even when levels of neutralizing antibodies are low or undetectable. Last, we show that when ferrets were vaccinated by the intramuscular route to induce antibodies against SARS-CoV-2, ferrets remain susceptible to infection of the upper respiratory tract. Collectively, these studies suggest protection of the upper respiratory tract will require vaccine approaches that mimic natural infection. %U https://www.biorxiv.org/content/biorxiv/early/2020/11/22/2020.11.20.392381.full.pdf