TY - JOUR T1 - NanoCaller for accurate detection of SNPs and indels in difficult-to-map regions from long-read sequencing by haplotype-aware deep neural networks JF - bioRxiv DO - 10.1101/2019.12.29.890418 SP - 2019.12.29.890418 AU - Umair Ahsan AU - Qian Liu AU - Li Fang AU - Kai Wang Y1 - 2020/01/01 UR - http://biorxiv.org/content/early/2020/11/30/2019.12.29.890418.abstract N2 - Variant (SNPs/indels) detection from high-throughput sequencing data remains an important yet unresolved problem. Long-read sequencing enables variant detection in difficult-to-map genomic regions that short-read sequencing cannot reliably examine (for example, only ~80% of genomic regions are marked as “high-confidence region” to have SNP/indel calls in the Genome In A Bottle project); however, the high per-base error rate poses unique challenges in variant detection. Existing methods on long-read data typically rely on analyzing pileup information from neighboring bases surrounding a candidate variant, similar to short-read variant callers, yet the benefits of much longer read length are not fully exploited. Here we present a deep neural network called NanoCaller, which detects SNPs by examining pileup information solely from other nonadjacent candidate SNPs that share the same long reads using long-range haplotype information. With called SNPs by NanoCaller, NanoCaller phases long reads and performs local realignment on two sets of phased reads to call indels by another deep neural network. Extensive evaluation on 5 human genomes (sequenced by Nanopore and PacBio long-read techniques) demonstrated that NanoCaller greatly improved performance in difficult-to-map regions, compared to other long-read variant callers. We experimentally validated 41 novel variants in difficult-to-map regions in a widely-used benchmarking genome, which cannot be reliably detected previously. We extensively evaluated the run-time characteristics and the sensitivity of parameter settings of NanoCaller to different characteristics of sequencing data. Finally, we achieved the best performance in Nanopore-based variant calling from MHC regions in the PrecisionFDA Variant Calling Challenge on Difficult-to-Map Regions by ensemble calling. In summary, by incorporating haplotype information in deep neural networks, NanoCaller facilitates the discovery of novel variants in complex genomic regions from long-read sequencing data.Competing Interest StatementThe authors have declared no competing interest. ER -