PT - JOURNAL ARTICLE AU - Kyesam Jung AU - Simon B. Eickhoff AU - Oleksandr V. Popovych TI - Tractography density affects whole-brain structural architecture and resting-state dynamical modeling AID - 10.1101/2020.12.03.410688 DP - 2020 Jan 01 TA - bioRxiv PG - 2020.12.03.410688 4099 - http://biorxiv.org/content/early/2020/12/04/2020.12.03.410688.short 4100 - http://biorxiv.org/content/early/2020/12/04/2020.12.03.410688.full AB - Dynamical modeling of the resting-state brain dynamics essentially relies on the empirical neuroimaging data utilized for the model derivation and validation. There is however still no standardized data processing for magnetic resonance imaging pipelines and the structural and functional connectomes involved in the models. In this study, we thus address how the parameters of diffusion-weighted data processing for structural connectivity (SC) can influence the validation results of the whole-brain mathematical models and search for the optimal parameter settings. On this way, we simulate the functional connectivity by systems of coupled oscillators, where the underlying network is constructed from the empirical SC and evaluate the performance of the models for varying parameters of data processing. For this, we introduce a set of simulation conditions including the varying number of total streamlines of the whole-brain tractography (WBT) used for extraction of SC, cortical parcellations based on functional and anatomical brain properties and distinct model fitting modalities. We observed that the graph-theoretical network properties of structural connectome can be affected by varying tractography density and strongly relate to the model performance. We explored free parameters of the considered models and found the optimal parameter configurations, where the model dynamics closely replicates the empirical data. We also found that the optimal number of the total streamlines of WBT can vary for different brain atlases. Consequently, we suggest a way how to improve the model performance based on the network properties and the optimal parameter configurations from multiple WBT conditions. Furthermore, the population of subjects can be stratified into subgroups with divergent behaviors induced by the varying number of WBT streamlines such that different recommendations can be made with respect to the data processing for individual subjects and brain parcellations.Author summary The human brain connectome at macro level provides an anatomical constitution of inter-regional connections through the white matter in the brain. Understanding the brain dynamics grounded on the structural architecture is one of the most studied and important topics actively debated in the neuroimaging research. However, the ground truth for the adequate processing and reconstruction of the human brain connectome in vivo is absent, which is crucial for evaluation of the results of the data-driven as well as model-based approaches to brain investigation. In this study we thus evaluate the effect of the whole-brain tractography density on the structural brain architecture by varying the number of total axonal fiber streamlines. The obtained results are validated throughout the dynamical modeling of the resting-state brain dynamics. We found that the tractography density may strongly affect the graph-theoretical network properties of the structural connectome. The obtained results also show that a dense whole-brain tractography is not always the best condition for the modeling, which depends on a selected brain parcellation used for the calculation of the structural connectivity and derivation of the model network. Our findings provide suggestions for the optimal data processing for neuroimaging research and brain modeling.Competing Interest StatementThe authors have declared no competing interest.