PT - JOURNAL ARTICLE AU - Xiaolin Wei AU - Yu Xiang AU - Ruocheng Shan AU - Derek T Peters AU - Tongyu Sun AU - Xin Lin AU - Wei Li AU - Yarui Diao TI - Multi-omics analysis of chromatin accessibility and interactions with transcriptome by HiCAR AID - 10.1101/2020.11.02.366062 DP - 2020 Jan 01 TA - bioRxiv PG - 2020.11.02.366062 4099 - http://biorxiv.org/content/early/2020/12/19/2020.11.02.366062.short 4100 - http://biorxiv.org/content/early/2020/12/19/2020.11.02.366062.full AB - The long-range interactions of cis-regulatory elements (cREs) play a central role in regulating the spatial-temporal gene expression program of multi-cellular organism. cREs are characterized by the presence of accessible (or open) chromatin, which can be identified at genome-wide scale with assays such as ATAC-seq, DHS-seq, and FAIRE-seq. However, it remains technically challenging to comprehensively identify the long-range physical interactions that occur between cREs, especially in a cost effective manner using low-input samples. Here, we report HiCAR (High-throughput Chromosome conformation capture on Accessible DNA with mRNA-seq co-assay), a method that enables simultaneous assessment of cis-regulatory chromatin interactions and chromatin accessibility, as well as evaluation of the transcriptome, which represents the functional output of chromatin structure and accessibility. Unlike immunoprecipitation-based methods such as HiChIP, PLAC-seq, and ChIA-PET, HiCAR does not require target-specific antibodies and thus can comprehensively capture the cis-regulatory chromatin contacts anchored at accessible regulatory DNA regions and associated with diverse epigenetic modifications and transcription factor binding. Compared to Trac-looping, another method designed to capture interactions between accessible chromatin regions, HiCAR produced a 17-fold greater yield of informative long-range cis- reads at a similar sequencing depth and required 1,000-fold fewer cells as input. Applying HiCAR to H1 human embryonic stem cells (hESCs) revealed 46,792 cis-regulatory chromatin interactions at 5kb resolution. Interestingly, we found that epigenetically poised, bivalent, and repressed cREs exhibit comparable spatial interaction activity to those transcriptionally activated cREs. Using machine learning approaches, we predicated 22 epigenome features that are potentially important for the spatial interaction activity of cREs in H1 hESC. Lastly, we also identified long-range cis-regulatory chromatin interactions in GM12878 and mouse embryonic stem cells with HiCAR. Our results demonstrate that HiCAR is a robust and cost-effective multi-omics assay, which is broadly applicable for simultaneous analysis of genome architecture, chromatin accessibility, and the transcriptome using low-input samples.Competing Interest StatementThe authors have declared no competing interest.