PT - JOURNAL ARTICLE AU - Nastase, Samuel A. AU - Liu, Yun-Fei AU - Hillman, Hanna AU - Zadbood, Asieh AU - Hasenfratz, Liat AU - Keshavarzian, Neggin AU - Chen, Janice AU - Honey, Christopher J. AU - Yeshurun, Yaara AU - Regev, Mor AU - Nguyen, Mai AU - Chang, Claire H. C. AU - Baldassano, Christopher AU - Lositsky, Olga AU - Simony, Erez AU - Chow, Michael A. AU - Leong, Yuan Chang AU - Brooks, Paula P. AU - Micciche, Emily AU - Choe, Gina AU - Goldstein, Ariel AU - Vanderwal, Tamara AU - Halchenko, Yaroslav O. AU - Norman, Kenneth A. AU - Hasson, Uri TI - Narratives: fMRI data for evaluating models of naturalistic language comprehension AID - 10.1101/2020.12.23.424091 DP - 2020 Jan 01 TA - bioRxiv PG - 2020.12.23.424091 4099 - http://biorxiv.org/content/early/2020/12/23/2020.12.23.424091.short 4100 - http://biorxiv.org/content/early/2020/12/23/2020.12.23.424091.full AB - The “Narratives” collection aggregates a variety of functional MRI datasets collected while human subjects listened to naturalistic spoken stories. The current release includes 345 subjects, 891 functional scans, and 27 diverse stories of varying duration totaling ~4.6 hours of unique stimuli (~43,000 words). This data collection is well-suited for naturalistic neuroimaging analysis, and is intended to serve as a benchmark for models of language and narrative comprehension. We provide standardized MRI data accompanied by rich metadata, preprocessed versions of the data ready for immediate use, and the spoken story stimuli with time-stamped phoneme- and word-level transcripts. All code and data are publicly available with full provenance in keeping with current best practices in transparent and reproducible neuroimaging.Competing Interest StatementThe authors have declared no competing interest.