@article {Salek2020.12.30.424812, author = {Asma B. Salek and Ruchi Bansal and Nicolas F. Berbari and Anthony J. Baucum II}, title = {Spinophilin limits GluN2B-containing NMDAR activity and sequelae associated with excessive hippocampal NMDAR function}, elocation-id = {2020.12.30.424812}, year = {2021}, doi = {10.1101/2020.12.30.424812}, publisher = {Cold Spring Harbor Laboratory}, abstract = {N-methyl-D-Aspartate receptors (NMDARs) are calcium-permeable ion channels that are ubiquitously expressed within the glutamatergic postsynaptic density. Phosphorylation of NMDAR subunits defines receptor activity and surface localization. Modulation of NMDAR phosphorylation by kinases and phosphatases regulates calcium entering the cell and subsequent activation of calcium-dependent processes. Spinophilin is the major synaptic protein phosphatase 1 (PP1) targeting protein that controls phosphorylation of myriad substrates via targeting or inhibition of PP1. Spinophilin limits NMDAR function in a PP1-dependent manner and we have previously shown that spinophilin sequesters PP1 away from the GluN2B subunit of the NMDAR, which results in increased phosphorylation of Ser-1284. However, how spinophilin modifies NMDAR function is unclear. Herein, we detail that while Ser-1284 phosphorylation increases calcium influx via GluN2B-containing NMDARs, overexpression of spinophilin decreases GluN2B-containing NMDAR activity by decreasing its surface expression. In hippocampal neurons isolated from spinophilin knockout animals there is an increase in cleaved caspase-3 levels compared to wildtype mice; however, this effect is not exclusively due to NMDAR activation; suggesting multiple putative mechanisms by which spinophilin may modulate caspase cleavage. Behaviorally, our data suggest that spinophilin knockout mice have deficits in spatial cognitive flexibility, a behavior associated GluN2B function within the hippocampus. Taken together, our data demonstrate a unique mechanism by which spinophilin modulates GluN2B containing NMDAR phosphorylation, channel function, and trafficking and that loss of spinophilin promotes pathological sequelae associated with GluN2B dysfunction.HIGHLIGHTSSpinophilin bidirectionally regulates GluN2B-containing NMDAR function.Loss of spinophilin in primary hippocampal neurons increases a pro-apoptotic marker.Loss of spinophilin in vivo decreases measures of spatial cognitive flexibility.Graphical Abstract Spinophilin increases the phosphorylation of Ser-1284 on GluN2B, thereby enhancing calcium influx through the GluN2B containing NMDARs. In contrast, spinophilin limits GluN2B-containing surface expression putatively due to modulation of GluN2B interactions with endocytotic proteins. Since the second effect of spinophilin occurs independent of the first, we observe an overall decrease in calcium influx through GluN2B containing NMDARs when spinophilin is present. This low, basal calcium influx is less likely to be promote calcium-dependent activation of caspase and downstream apoptotic pathways and permits flexible search strategies and behaviors. In the absence of spinophilin, the spinophilin-driven internalization of the receptors is decreased, more receptors are expressed on the surface and calcium influx into the cell is increased. This high levels of intracellular calcium triggers apoptotic pathways leading to cell death. This impact may be more dramatic in cells with high expression of GluN2B-containing NMDA receptors. This loss of spinophilin reduces cognitive flexibility in hippocampal dependent tasks.Competing Interest StatementThe authors have declared no competing interest.}, URL = {https://www.biorxiv.org/content/early/2021/01/01/2020.12.30.424812}, eprint = {https://www.biorxiv.org/content/early/2021/01/01/2020.12.30.424812.full.pdf}, journal = {bioRxiv} }