PT - JOURNAL ARTICLE AU - Jordi Rodon AU - Jordana Muñoz-Basagoiti AU - Daniel Perez-Zsolt AU - Marc Noguera-Julian AU - Roger Paredes AU - Lourdes Mateu AU - Carles Quiñones AU - Itziar Erkizia AU - Ignacio Blanco AU - Alfonso Valencia AU - Víctor Guallar AU - Jorge Carrillo AU - Julià Blanco AU - Joaquim Segalés AU - Bonaventura Clotet AU - Júlia Vergara-Alert AU - Nuria Izquierdo-Useros TI - Identification of Plitidepsin as Potent Inhibitor of SARS-CoV-2-Induced Cytopathic Effect after a Drug Repurposing Screen AID - 10.1101/2020.04.23.055756 DP - 2021 Jan 01 TA - bioRxiv PG - 2020.04.23.055756 4099 - http://biorxiv.org/content/early/2021/01/04/2020.04.23.055756.short 4100 - http://biorxiv.org/content/early/2021/01/04/2020.04.23.055756.full AB - There is an urgent need to identify therapeutics for the treatment of Coronavirus diseases 2019 (COVID-19). Although different antivirals are given for the clinical management of SARS-CoV-2 infection, their efficacy is still under evaluation. Here, we have screened existing drugs approved for human use in a variety of diseases, to compare how they counteract SARS-CoV-2-induced cytopathic effect and viral replication in vitro. Among the potential 72 antivirals tested herein that were previously proposed to inhibit SARS-CoV-2 infection, only 18% had an IC50 below 25 μM or 102 IU/mL. These included plitidepsin, novel cathepsin inhibitors, nelfinavir mesylate hydrate, interferon 2-alpha, interferon-gamma, fenofibrate, camostat along the well-known remdesivir and chloroquine derivatives. Plitidepsin was the only clinically approved drug displaying nanomolar efficacy. Four of these families, including novel cathepsin inhibitors, blocked viral entry in a cell-type specific manner. Since the most effective antivirals usually combine therapies that tackle the virus at different steps of infection, we also assessed several drug combinations. Although no particular synergy was found, inhibitory combinations did not reduce their antiviral activity. Thus, these combinations could decrease the potential emergence of resistant viruses. Antivirals prioritized herein identify novel compounds and their mode of action, while independently replicating the activity of a reduced proportion of drugs which are mostly approved for clinical use. Combinations of these drugs should be tested in animal models to inform the design of fast track clinical trials.Competing Interest StatementA patent application based on this work has been filed (EP20382821.5). The authors declare that no other competing financial interests exist.