RT Journal Article SR Electronic T1 Locomotion-induced ocular motor behavior in larval Xenopus is developmentally tuned by visuo-vestibular reflexes JF bioRxiv FD Cold Spring Harbor Laboratory SP 2021.01.04.424105 DO 10.1101/2021.01.04.424105 A1 Julien Bacqué-Cazenave A1 Gilles Courtand A1 Mathieu Beraneck A1 Hans Straka A1 Denis Combes A1 François M. Lambert YR 2021 UL http://biorxiv.org/content/early/2021/01/04/2021.01.04.424105.abstract AB Locomotion requires neural computations to maintain stable perception of the world despite disturbing consequences of the motor behavior on sensory stability. The developmental establishment of locomotor proficiency is therefore accompanied by a concurrent maturation of gaze-stabilizing motor behaviors. Using developing larval Xenopus, we demonstrate mutual plasticity of predictive spinal locomotor efference copies and multi-sensory motion signals with the aim to constantly ensure dynamically adequate eye movements during swimming. Following simultaneous ontogenetic onsets of locomotion, spino-ocular, optokinetic and otolith-ocular motor behaviors, locomotor efference copy-driven eye movements improve through gradually augmenting influences of semicircular canal signals. Accordingly, neuronal computations change from a predominating cancelation of angular vestibulo-ocular reflexes by locomotor efference copies in young larvae to a summation of these signals in older larvae. The developmental switch occurs in synchrony with a reduced efficacy of the tail-undulatory locomotor pattern generator causing gradually decaying influences on the ocular motor output.Competing Interest StatementThe authors have declared no competing interest.