PT - JOURNAL ARTICLE AU - Quenisha Baldwin AU - Eleni Panagiotou TI - The local topological free energy of proteins AID - 10.1101/2021.01.06.425494 DP - 2021 Jan 01 TA - bioRxiv PG - 2021.01.06.425494 4099 - http://biorxiv.org/content/early/2021/01/08/2021.01.06.425494.short 4100 - http://biorxiv.org/content/early/2021/01/08/2021.01.06.425494.full AB - Protein folding, the process by which proteins attain a 3-dimensional conformation necessary for their function, remains an important unsolved problem in biology. A major gap in our understanding is how local properties of proteins relate to their global properties. In this manuscript, we use the Writhe and Torsion to introduce a new local topological/geometrical free energy that can be associated to 4 consecutive residues along protein backbone. By analyzing a culled protein dataset from the PDB, our results show that high local topological free energy conformations are independent of sequence and may be involved in the rate limiting step in protein folding. By analyzing a set of 2-state single domain proteins, we find that the total local topological free energy of these proteins correlates with the experimentally observed folding rates reported in [29].Competing Interest StatementThe authors have declared no competing interest.